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1 Introduction

Modern cyber-physical systems generate continuous sensor streams encoding process health. When
anomalies occur, detection systems indicate that something has deviated, but rarely reveal what has
failed or why. This gap between detection and diagnosis motivates systematic root cause analysis
(RCA) methods.

Consider elevated residuals on sensor y3. The cause could be a bias in y3 itself, drift in a neighboring
sensor propagating through shared dynamics, efficiency degradation in an upstream process, or
coupling changes between subsystems. Each hypothesis implies different maintenance actions, and
misdiagnosis carries significant costs.

Traditional approaches split into model-based methods that leverage analytical redundancy [1, 2] but
suffer brittleness to model mismatch, and data-driven methods [3–5] that produce anomaly scores
rather than diagnoses. Neither addresses the sequential reasoning required to discriminate among
competing hypotheses.

Recent LLM-based agentic systems demonstrate multi-step reasoning with external tools [6, 7].
However, direct application to time-series diagnosis is challenging: raw data is high-dimensional,
fault signatures are subtle, and LLMs can produce coherent but incorrect explanations without
physical grounding [8]. In high-stakes industrial domains, consistent cumulative evidence gathering
is essential—single-shot LLM predictions are insufficient for safety-critical decisions.

This work proposes an agentic RCA framework that structures LLM reasoning through explicit
hypothesis tracking. Rather than relying on free-form LLM outputs, we maintain belief scores over
a discrete fault space that accumulate evidence across diagnostic steps. Each tool transforms raw
time-series into interpretable quantities, and an LLM judge maps findings to discrete evidence scores.
We do not model explicit likelihoods; the update is a deterministic log-odds accumulator. This
structured approach channels the LLM’s reasoning capacity while ensuring consistent, auditable
evidence accumulation.

2 Related Work

Model-Based Fault Detection and Isolation. Classical FDI leverages analytical redundancy through
observers, parity relations, and residual generators [9]. The structured residual approach designs
generators sensitive to specific fault subsets while insensitive to others [2]. However, these methods
require accurate analytical models and face combinatorial complexity as fault modes grow.

Data-Driven Anomaly Detection. Autoencoders and VAEs flag high reconstruction error as anoma-
lous [5, 10]; LSTM-based models capture temporal dependencies [11]; graph neural networks encode
system structure [12]. However, these methods identify which sensor is anomalous but cannot de-
termine why—distinguishing sensor faults from propagated process faults requires causal reasoning
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Figure 1: Causal graph G of the benchmark system. Actuators (blue) drive processes (orange), which
propagate through coupled dynamics to sensors (green). Faults at upstream components affect all
downstream sensors, enabling causal reasoning for diagnosis.

that data-driven methods cannot learn without labeled fault examples, and GNN-based approaches
require retraining for each new system topology.

Agentic AI and Tool Use. Chain-of-Thought prompting elicits step-by-step reasoning [13], ReAct
interleaves reasoning with actions [6], and Tree-of-Thought explores multiple paths [14]. However,
these approaches rely on implicit reasoning over conversation history without structured evidence
accumulation. Our experiments show that ReAct-style reasoning achieves high accuracy on sensor
faults but fails on process faults where evidence is weak and distributed (Section 5). We address this
by combining LLM tool-use with explicit log-odds belief tracking.

LLM-Based Root Cause Analysis. RCAgent [15] and GALA [16] apply LLM agents to cloud
incident diagnosis via log analysis and service dependency graphs. These focus on discrete event
systems; we extend agentic RCA to cyber-physical systems with continuous sensor measurements.

3 Problem Formulation

3.1 System Model

We consider a discrete-time dynamical system with state xt ∈ Rnx , control inputs ut ∈ Rnu , and
measurements yt ∈ Rny :

xt+1 = f(xt,ut) + εt (1)
yt = g(xt) + νt (2)

where εt ∼ N (0,Q) and νt ∼ N (0,R) are process and measurement noise. The causal structure
is encoded in a directed acyclic graph G = (V, E), sampled by first drawing a topological ordering
of processes and adding directed edges only consistent with this order; hence feedback cycles are
excluded.

For the benchmark system, we instantiate nu = 4 actuators, nx = 10 processes, and ny = 10 sensors
with coupled autoregressive dynamics:

xt+1,i = aixt,i +
∑

j∈Pa(Pi)

cjixt,j + biut,k(i) + εt,i (3)

where ai is the autoregressive coefficient, cji the coupling from process j to i, and k(i) the actuator
driving process i. Figure 1 illustrates the causal structure.

3.2 Fault Model

A fault is characterized by tuple F = (c, τ, t0, θ): component c ∈ V , fault type τ ∈ Tc, onset time t0,
and severity parameter θ. We consider two fault categories with distinct propagation characteristics.
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Sensor Faults affect only the measurement channel yi without altering system dynamics. A bias
fault applies a constant offset ỹi,t = yi,t + β with β ∼ Uniform[0.5, 1.5], producing a step change in
the residual mean. A drift fault introduces a time-varying offset ỹi,t = yi,t + ρ(t− t0)d with rate
ρ ∼ Uniform[0.01, 0.03] and direction d ∈ {−1,+1}, causing monotonic deviation. A stuck fault
freezes the measurement at ỹi,t = yi,t−0

, resulting in variance collapse as the frozen value diverges
from dynamic predictions.

Process Faults modify system dynamics and propagate through the causal graph. An efficiency
fault attenuates the autoregressive coefficient ãi = γai with γ = 0.5, reducing response amplitude
in process Pi and all downstream sensors DescG(Pi). A coupling fault perturbs the inter-process
coefficient c̃ij = cij + δ with δ ∼ Uniform[0.1, 0.3], altering cross-channel correlations without
clear localization.

The key diagnostic challenge is that sensor faults produce localized signatures (single channel
affected), while process faults produce diffuse signatures (multiple channels with weak individual
signals). This asymmetry makes process fault diagnosis inherently harder.

3.3 Problem Formulation

The RCA problem requires identifying the active fault from hypothesis spaceH comprising |H| =
1 + 3ny + 2nx mutually exclusive hypotheses:

H = {Hhealthy} ∪ {(Si, τs) : i ∈ [ny], τs ∈ TS} ∪ {(Pj , τp) : j ∈ [nx], τp ∈ TP } (4)

where TS = {bias, drift, stuck} and TP = {efficiency, coupling}.
Causal Admissibility. Not all hypotheses are consistent with observed anomaly patterns. Let
Sanom = {i : Ei > θE} denote sensors with anomalous residual energy, where Ei =

∑
t z

2
t,i. The

admissible hypothesis space is constrained by the causal graph:

Cadm =
⋃

i∈Sanom

({Si} ∪ PaG(Si) ∪ PaG(PaG(Si))) (5)

This constraint prunes structurally invalid explanations. For example, if only S4 shows anomalous
residuals, hypotheses involving S1 faults are inadmissible if S1 does not causally affect S4. This
reduces the search space substantially before verification begins.

Sequential Hypothesis Testing. Given observations {(ut,yt)}Tt=1 and causal graph G, we formulate
RCA as sequential hypothesis testing. The agent operates in a loop: at each step k, it (1) selects a
diagnostic tool based on current beliefs, (2) executes the tool and observes results, (3) updates beliefs
based on evidence, and (4) decides whether to terminate or continue. This iterative refinement allows
the agent to focus investigation on discriminating between remaining hypotheses.

Let πk(H) denote beliefs at step k, initialized uniformly π0(H) = 1/|H|. The design objective is to
maximize diagnostic accuracy while minimizing investigation cost:

max E

[
1[H∗ = Ĥ]− λ

K∑
k=1

c(τk)

]
(6)

where Ĥ = argmaxH πK(H) is the final prediction and c(τk) the cost of tool τk. Rather than
explicitly optimizing this objective, our agent uses LLM-based reasoning to select informative tools
and accumulates evidence through a principled belief update mechanism.

4 Methodology

The proposed framework comprises four components: a learned world model for residual generation,
a diagnostic tool library, a belief tracking mechanism with evidence accumulation, and an agent
architecture with in-context learning. Figure 2 provides an overview of the system architecture.

4.1 World Model and Residualization

The first stage transforms raw sensor measurements into normalized residuals that highlight deviations
from nominal behavior. We train a sequence-to-sequence world model exclusively on healthy episodes,
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Figure 2: DiagAgent architecture. World model
computes residuals, agent loop selects tools and
updates beliefs, vector memory stores successful
traces for RAP.

Figure 3: ReAct-style loop. The agent reasons
about beliefs (Thought), executes a tool (Action),
and updates hypotheses (Observation).

following the principle that a model trained on nominal data will exhibit increased prediction error
when presented with faulty data.

The world model takes the form of an LSTM that predicts the next observation given history. Given
window length W , the input concatenates recent observations:

zt−W :t = [ut−W ,yt−W , . . . ,ut,yt] ∈ RW×(nu+ny) (7)

The LSTM produces hidden state ht projected to predict ŷt+1 = Woht + bo. Training minimizes
MSE loss on healthy data. At inference, we compute normalized residuals:

zt,i =
yt,i − ŷt,i

σi
(8)

where σi is estimated from healthy episodes. Under nominal conditions, residuals follow a standard
normal distribution; faults cause systematic deviations. Full architecture and training details are
provided in Appendix A.2.

4.2 Diagnostic Tools: The Verification Layer

The core of our framework is a suite of diagnostic tools that extract structured evidence from residuals.
Each tool answers a specific diagnostic question, and the combination enables discrimination between
competing hypotheses. The full specification with costs is provided in Appendix A.3.

Screening tools provide rapid initial assessment by computing statistics over pre/post-fault win-
dows. The residual energy tool ranks sensors by cumulative squared deviation Ei =

∑
t z

2
t,i,

identifying which channels exhibit anomalous behavior. The variance ratio tool computes VRi =
Var(yafter

i )/Var(ybefore
i ) to discriminate fault types: VR ≪ 1 indicates stuck faults (variance col-

lapse), while VR ≈ 1 rules them out. The mean shift tool computes z-scores of level changes, where
high values suggest bias faults.

Fault-specific detectors target individual fault signatures. The step change test confirms bias faults
by detecting significant mean shifts with preserved variance. The trend regression tool fits a linear
model to identify drift faults with monotonic temporal patterns. The variance collapse test detects
stuck faults by checking for near-zero post-fault variance. For process faults, the response attenuation
test measures reduced autoregressive response, while the correlation change test detects altered
cross-channel dependencies.

Causal analysis tools leverage the system graph G to distinguish sensor from process faults. The
anomaly spread count measures how many sensors in DescG(c) exhibit anomalies—high counts
support process fault hypotheses since process faults propagate to multiple descendants. The causal
ancestor search identifies potential root causes by tracing anomaly patterns backward through the
causal graph.

Each tool requires calibrated thresholds (e.g., θE for energy, significance levels for statistical tests).
We tune thresholds on a held-out validation set to maximize diagnostic accuracy (Appendix A.2).
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4.3 DiagAgent: Belief Update and Tool Selection

The agent maintains beliefs over all hypotheses H via log-odds accumulation. After each tool
execution, an LLM judge (GPT-4o-mini) assigns evidence scores sk(H) ∈ {−4,−2, 0,+2,+4} to
each hypothesis, representing strong disconfirmation to strong confirmation. Beliefs update as:

ℓk+1(H) = ℓk(H) + sk(H), Pk+1(H) =
exp(ℓk+1(H))∑
H′ exp(ℓk+1(H ′))

(9)

where +4 indicates strong confirmation (e.g., step change with > 4σ shift) and −4 indicates strong
refutation (e.g., normal variance ratio when testing stuck). In practice, a small number of strong
confirmations can push the posterior beyond the 0.90 stopping threshold, especially when competing
hypotheses receive weak or negative evidence. Hypotheses with P (H) < pmin are pruned to focus
computation.

The diagnostic loop (Algorithm 1 and Figure 6 in Appendix) iterates: (1) the LLM planner selects the
next tool based on current beliefs, tool descriptions, and investigation history; (2) the tool executes
on residual data; (3) beliefs update via the scoring mechanism above. The loop terminates when
maxH P (H) ≥ 0.90 or maximum steps K = 8 are reached.

Retrieval-Augmented Planning (RAP). Rather than training a separate policy, we retrieve in-context
demonstrations from successful diagnoses. An experience buffer B stores successful episodes with
their residual signatures f ∈ Rny (normalized per-channel energy) and tool sequences. For a new
episode, we retrieve similar cases via cosine similarity:

Bsimilar =
(k)

argmax
b∈B

f⊤fb
∥f∥∥fb∥

(10)

Retrieved traces are formatted as natural language demonstrations (e.g., “Similar case S3_bias:
residual_energy→ mean_shift→ step_change_test”). No parameter learning occurs; we simply
provide tool traces as few-shot examples to the LLM planner.

5 Experiments

We evaluate our framework on a simulated industrial benchmark with 10 processes and 10 sensors.
The evaluation set contains 40 episodes: 8 per fault category (bias, drift, stuck, efficiency, coupling),
ensuring balanced coverage across sensor and process faults. Each episode represents a single
fault instance; reported accuracies reflect the fraction of correctly diagnosed episodes. Complete
experimental configuration is provided in Appendix A.2.

5.1 Baselines

We compare against three baseline categories. Statistical baselines (Max Residual, PCA-T2, PCA-
SPE) identify the most anomalous sensor and assign fault type via variance/mean heuristics; deep
learning baselines (LSTM-AE, VAE) similarly flag anomalies via reconstruction error. Agentic
baselines: ReAct [6] uses the same diagnostic tools as DiagAgent but without structured belief
tracking—the LLM reasons over raw tool outputs and makes a final diagnosis; Random selects tools
uniformly; All-Tools executes all tools exhaustively.

5.2 Main Results

Table 1 and Figure 4 present the main comparison. ReAct matches DiagAgent on sensor faults (88%)
since both use the same tools, but achieves only 6% on process faults compared to DiagAgent’s 69%
in our setup. This gap isolates the contribution of structured belief tracking: without accumulating
evidence across tools, the LLM cannot integrate weak signals that individually appear inconclusive
but collectively indicate a process fault. RAP further improves overall accuracy to 85% by providing
effective tool sequences from similar past cases.

5.3 Per-Category Analysis

Table 2 breaks down accuracy by fault category. Drift and stuck faults achieve 100% due to distinctive
signatures (monotonic trend, variance collapse). Bias is harder (5/8→6/8) because cascade effects
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Table 1: Main results on 40 episodes (8 per category). ReAct matches DiagAgent on sensor faults
(88%) but achieves only 6% on process faults vs DiagAgent’s 69%—in our setup, tool access without
structured belief accumulation is insufficient for weak, distributed evidence.

Method Overall Sensor Process

Statistical Baselines
Max Residual 0.25 0.42 –
PCA-T2 0.20 0.33 –
PCA-SPE 0.28 0.46 –

Deep Learning Baselines
LSTM-AE 0.30 0.50 –
VAE 0.33 0.54 –

Agentic Baselines
ReAct 0.55 0.88 0.06
Random + LLM 0.12 0.17 0.06
All-Tools + LLM 0.20 0.33 0.00

Our Method
DiagAgent 0.80 0.88 0.69
DiagAgent + RAP 0.85 0.92 0.75

Max
Residual

PCA-T² PCA-SPE LSTM-AE VAE ReAct Random
+LLM

All-Tools
+LLM

DiagAgent DiagAgent
+RAP
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Figure 4: Diagnostic accuracy comparison. Statistical and DL baselines target detection; we include
them as reference. ReAct matches DiagAgent on sensor faults (88%) but achieves only 6% on process
faults in our setup.

from upstream processes can mimic sensor offsets. Process faults achieve 62–75%: efficiency and
coupling faults are detected via response attenuation and correlation shifts respectively, but are often
confused with each other (Table 3). RAP provides +1 episode improvement on bias and coupling—the
most challenging categories.

5.4 Diagnostic Trace Analysis

Figure 5 illustrates how belief entropy evolves during diagnosis. Successful cases show steady
reduction from 3.93 nats (uniform prior) to below 1.5 nats as each tool provides discriminative
evidence. Failed diagnoses plateau above 2.5 nats—the top hypothesis oscillates without converging,
indicating ambiguous fault signatures.

6 Discussion

Why Anomaly Detection is Insufficient. Statistical and deep learning baselines perform anomaly
detection, not root cause analysis. They identify which sensor deviates from normal but cannot
determine why—whether the anomaly originates from a sensor fault or propagates from an upstream
process. This is not a failure of specific implementations but a fundamental scope difference: these
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Table 2: Per-category accuracy (8 episodes
each).

Category DiagAgent +RAP

Sensor Faults (24 ep)
Bias 5/8 6/8
Drift 8/8 8/8
Stuck 8/8 8/8

Process Faults (16 ep)
Efficiency 6/8 6/8
Coupling 5/8 6/8

Overall 32/40 34/40

Table 3: Confusion matrix (DiagAgent + RAP).
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Figure 5: Entropy trajectories for successful (green) and failed (red) diagnoses. Successful cases
show steady entropy reduction as tools eliminate hypotheses; failed cases plateau with hypothesis
oscillation.

methods are trained on healthy data without fault labels, so distinguishing fault types requires
additional reasoning that anomaly scores alone cannot provide.

Sensor vs Process Fault Asymmetry. Sensor faults (88%) are substantially easier to diagnose than
process faults (69%). This gap stems from signal characteristics: sensor faults produce localized,
high-magnitude anomalies in a single channel, while process faults produce diffuse effects across
multiple downstream sensors with lower individual magnitudes. The confusion matrix (Table 3)
reveals specific failure modes: bias faults are occasionally confused with process faults due to cascade
effects, while efficiency and coupling faults show systematic cross-confusion—both produce similar
multi-sensor patterns that are difficult to disambiguate even with dedicated detection tools.

Retrieval-Augmented Planning (RAP). RAP improves accuracy by 5% (32→34/40) by providing
effective tool orderings from similar past cases. The gains concentrate on bias (+1/8) and coupling
(+1/8)—the categories where tool sequence matters most. No parameter learning occurs; we simply
retrieve similar episodes and provide their tool traces as few-shot examples. This suggests that LLMs
can extract procedural knowledge from demonstrations without gradient updates.

Entropy as Diagnostic Confidence. Belief entropy provides a reliable indicator of diagnostic
certainty. Successful diagnoses show entropy dropping from 3.93 nats (uniform prior) to below
1.5 nats, with sharp drops when detection tools provide confirmatory evidence. Failed diagnoses
plateau above 2.5 nats with hypothesis oscillation—the top hypothesis changes multiple times without
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converging. This pattern suggests practical stopping criteria: terminate early when entropy drops
sharply (high confidence), continue investigation when entropy plateaus (ambiguous evidence).

Limitations and Future Work. Several factors limit current evaluation: (1) We use 40 simulated
episodes; real industrial processes may exhibit different fault characteristics. (2) The causal graph
is assumed known. (3) LLM outputs are stochastic; results may vary across runs. (4) Performance
depends critically on the LLM judge mapping tool outputs to discrete evidence scores—we mitigate
with low temperature and constrained output schema, but ablation with a deterministic rule-based
scorer remains future work. (5) The judge prompts are designed for this fault taxonomy; new fault
types require prompt adaptation. (6) Baselines (AE, VAE, PCA) target anomaly detection rather than
typed diagnosis; we include them as reference points, not direct competitors. Future work includes
validation on real datasets and replacing the LLM judge with learned or rule-based alternatives.

7 Conclusion

We presented DiagAgent, a tool-augmented LLM agent for root cause analysis in industrial systems.
By combining structured hypothesis tracking with LLM-based tool selection and evidence scoring,
DiagAgent achieves 85% diagnostic accuracy with RAP. The key comparison is with ReAct: both
use identical tools, yet DiagAgent substantially outperforms ReAct on process faults—demonstrating
that structured evidence accumulation is essential when signals are weak and distributed. Our results
show that LLMs can perform systematic diagnostic reasoning when augmented with domain-specific
tools and log-odds belief tracking.
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A Appendix

A.1 Algorithm Details

Algorithm 1 presents the complete DiagAgent diagnostic procedure. Figure 6 provides a visual
overview of the diagnostic workflow.

Figure 6: DiagAgent diagnostic workflow. The Initialization phase receives episode data, computes
normalized residuals via the LSTM world model, initializes the hypothesis set, and sets uniform
log-odds. The Diagnostic Loop iterates: the LLM-Planner selects the next tool, the tool executes on
residual data, history is updated, beliefs are refined via log-odds accumulation, and stopping criteria
are checked. The loop terminates when confidence exceeds 90% or maximum steps are reached.

Algorithm 1 DiagAgent: Hypothesis-Driven Diagnostic Reasoning

Require: Observations Y, inputs U, causal graph G, tool library T
Ensure: Predicted fault hypothesis Ĥ

1: z← LSTM-Residuals(U,Y)
2: H ← {Hhealthy} ∪ Hsensor ∪Hprocess
3: P0(H)← 1/|H|, ℓ0(H)← 0 for all H
4: history← []
5: for k = 1 to K do
6: τk ← LLM-Planner(Pk−1, T , history)
7: rk ← Execute(τk, z,G)
8: history.append((τk, rk))
9: sk ← LLM-Judge(rk,H) {Scores in {−4,−2, 0,+2,+4}}

10: for each H ∈ H do
11: ℓk(H)← ℓk−1(H) + sk(H)
12: Pk(H)← exp(ℓk(H))/

∑
H′ exp(ℓk(H

′))
13: end for
14: H ← {H : Pk(H) ≥ pmin} {Prune low-probability hypotheses}
15: if maxH Pk(H) ≥ pstop then
16: break
17: end if
18: end for
19: return argmaxH PK(H)

A.2 Experimental Configuration

A.2.1 Benchmark System

We simulate a coupled dynamical system representing an industrial process with the following
components:
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Table 4: Benchmark system configuration.
Component Description Value

Actuators Control inputs ut 4
Processes State variables xt 10
Sensors Measurements yt 10
Episode length Time steps per episode 200
Fault onset Time step when fault is injected 50
Sampling rate Simulation time step 1.0

The system dynamics follow coupled autoregressive equations:

xt+1,i = aixt,i +
∑

j∈Pa(i)

cjixt,j + biut,k(i) + εt,i (11)

where ai ∼ Uniform[0.7, 0.9] are autoregressive coefficients, cji ∼ Uniform[0.1, 0.3] are coupling
coefficients, and bi ∼ Uniform[0.3, 0.5] are input gains. Process noise εt,i ∼ N (0, 0.12) and sensor
noise νt,i ∼ N (0, 0.032).

A.2.2 Fault Injection Parameters

Table 5 specifies the fault injection parameters used in data generation.

Table 5: Fault injection parameters by fault type.
Fault Type Parameter Distribution Description

Sensor Bias β Uniform[0.5, 1.5] Additive offset
Sensor Drift ρ Uniform[0.01, 0.03] Drift rate per step
Sensor Drift d {−1,+1} Drift direction
Sensor Stuck vstuck yt0 Frozen at onset value
Process Efficiency γ 0.5 AR coefficient multiplier
Process Coupling δ Uniform[0.1, 0.3] Coupling perturbation

A.2.3 LSTM World Model Training

The LSTM world model is trained exclusively on healthy episodes to learn nominal system dynamics.
Training configuration:

The model takes a sliding window of W = 50 time steps of concatenated inputs [ut−W :t,yt−W :t]
and predicts the next sensor observation ŷt+1. Residuals are computed as zt,i = (yt,i − ŷt,i)/σi

where σi is estimated from healthy validation data.

A.2.4 Evaluation Protocol

Each evaluation episode proceeds as follows:

1. Data loading: Load episode measurements {(ut,yt)}200t=1 and ground truth fault label.
2. Residual computation: Pass through trained LSTM to obtain residuals z51:200 (post-fault

window).
3. Agent initialization: Initialize uniform belief overH, reset tool history.
4. Diagnostic loop: For up to K = 8 steps:

• DiagAgent selects next tool based on current beliefs
• Tool executes and returns structured output
• LLM judge scores hypotheses based on tool output
• Beliefs updated via log-odds accumulation
• Check stopping criteria (pmax ≥ 0.90 or margin ≥ 0.40)

5. Prediction: Return Ĥ = argmaxH P (H)
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Table 6: LSTM world model training configuration.
Parameter Description Value

Architecture
Input dimension nu + ny 14
Hidden dimension LSTM hidden size 64
Number of layers Stacked LSTM layers 2
Output dimension ny (predicted sensors) 10
Dropout Between LSTM layers 0.1
Window size Input sequence length 50

Training
Optimizer Adam
Learning rate 1× 10−3

Batch size 64
Max epochs 50
Early stopping Patience (val loss) 10 epochs
Loss function MSE

Performance
Training MSE Final training loss 0.0012
Validation MSE Final validation loss 0.0015
Training time On single GPU ∼5 min

6. Evaluation: Record accuracy, steps used, total cost, entropy trajectory

All experiments use GPT-4o-mini with temperature 0.1. Results are averaged over 3 random seeds
for LSTM training; the same trained model is used across all diagnostic evaluations.

A.3 Diagnostic Tool Specifications

Table 7 provides the complete tool library with computational costs. All diagnostic tools accept a
query time t as parameter. The agent specifies t to define analysis windows: Wbefore(t) = [t−W, t)
andWafter(t) = [t, t+W ] where W is the window size (default 40 steps). This formulation allows
the agent to probe different time points without assuming known fault onset.

Table 7: Diagnostic tool library with costs. Tools are organized by category: screening for initial
assessment, detection for fault-type confirmation, and causal for graph-based reasoning.

Category Tool Cost

Screening
residual_energy 0.5
variance_ratio 0.5
mean_shift 0.5

Sensor Detection
step_change_test 0.8
trend_regression 0.8
variance_collapse_test 0.8

Process Detection response_attenuation_test 1.0
correlation_change_test 1.0

Causal Analysis anomaly_spread_count 1.0
causal_ancestor_search 1.0

Residual Energy Ranking. Given query time t, computes cumulative squared residual per channel
in the after-window:

Ei(t) =
∑

τ∈Wafter(t)

z2τ,i (12)

Channels exceeding threshold Ei(t) > θE are flagged as anomalous.
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Variance Ratio Analysis. Compares variance between windows:

VRi(t) =
Var(yτ,i : τ ∈ Wafter(t))

Var(yτ,i : τ ∈ Wbefore(t))
(13)

Interpretation: VRi ≪ 1 suggests stuck fault (variance collapse); VRi ≈ 1 with mean shift suggests
bias; VRi ≫ 1 indicates noise inflation or process instability.

Mean Shift Detection. Quantifies level change between windows as z-score:

Zµ
i (t) =

ȳafter
i (t)− ȳbefore

i (t)

σ̂before
i (t)

(14)

where ȳbefore/after
i and σ̂before

i are computed over respective windows.

Step Change Test. Confirms bias fault at query time t if mean shift is significant while variance is
preserved:

|Zµ
i (t)| > θbias and VRi(t) < θvar (15)

Trend Regression. Fits OLS regression yτ,i = α+ ρτ + ϵ for τ ∈ Wafter(t). Drift confirmed if:

|ρ̂| > θslope and R2 > θR2 (16)

Variance Collapse Test. Confirms stuck fault if variance collapses in after-window: VRi(t) <
θstuck.

Response Attenuation Test. Measures downstream response ratio for efficiency faults:

∥ypost∥2
∥ypre∥2

< θeff (17)

Correlation Change Test. Detects coupling faults via correlation change between linked channels:

∆ρij = ρ̂post
ij − ρ̂pre

ij (18)

Anomaly Spread Count. Counts anomalous descendants of hypothesized faulty process:

Nanom(Pj) =
∑

Si∈Desc(Pj)

1[Ei > θE ] (19)

High spread supports process fault; isolated anomaly supports sensor fault.

Causal Ancestor Search. For anomalous sensor Si, evaluates consistency for each ancestor
c ∈ Pa(Si) ∪ Pa(Pa(Si)). Returns ranked list of admissible upstream hypotheses.

A.3.1 Future Tools (Not Used in Current Experiments)

The following tools are designed but not evaluated in the current experiments. We include their
specifications for completeness and future work.

Counterfactual Analysis. Estimates residual reduction if hypothesized fault were removed:

∆E(H) =
Eaffected(H)− Ebaseline · |affected(H)|

Etotal
(20)

where Eaffected(H) is residual energy in sensors affected by hypothesis H , and Ebaseline is median
per-sensor energy. High ∆E supports the hypothesis as root cause.

SQL Query Tool. Provides structured queries over residuals and measurements using SQL-like
syntax. Supports operations including: top-k channel ranking by energy, window-based comparisons
(pre vs post-fault), aggregations (mean, variance, max), and filtering by threshold. Example: SELECT
channel, energy FROM residuals WHERE t > t0 ORDER BY energy DESC LIMIT 5.
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Code Interpreter Tool. Executes custom Python expressions for flexible analysis not covered
by predefined tools. Operates in a sandboxed environment with access to numpy functions (mean,
std, corrcoef, gradient, etc.) and episode data (residuals z, measurements y, inputs u). Useful for
computing custom metrics or testing ad-hoc hypotheses.

A.4 Threshold Calibration

Detection tool thresholds impact diagnostic accuracy. We tune thresholds on a held-out validation set
of 50 episodes to maximize end-to-end accuracy. Table 8 shows the final values, chosen to align with
fault generation parameters.

Table 8: Optimized detection thresholds.
Tool Parameter Value

Residual Energy θE 50.0
Mean Shift θbias 2.0σ
Variance Ratio θvar [0.5, 2.5]
Drift Slope θslope 0.025
Drift R2 θR2 0.30
Stuck Detection θstuck 0.05

The thresholds are calibrated to match fault generation parameters: θbias = 2.0σ aligns with bias
magnitude β ∈ [0.5, 1.5]; θstuck = 0.05 captures variance collapse from frozen measurements; drift
thresholds match generation rate ρ ∈ [0.01, 0.03].

A.5 Hyperparameter Settings

Table 9: Agent and belief update hyperparameters.
Parameter Description Value

K Maximum investigation steps 8
pstop Confidence stopping threshold 0.90
pmin Pruning threshold 0.01
kmax Maximum active hypotheses 20
W LSTM window size 50

A.6 World Model Architecture

The LSTM world model uses two layers with 64 hidden units and dropout 0.1. Input dimension
is nu + ny = 14 (4 actuators + 10 sensors); output dimension is ny = 10. Training uses Adam
optimizer with learning rate 10−3, batch size 64, and early stopping with patience 10 epochs. The
model is trained exclusively on healthy episodes to learn nominal dynamics.

A.7 LLM Configuration

We use GPT-4o-mini for both planning and judging with temperature 0.1 for deterministic outputs.
The planner prompt includes: current belief distribution (top-10 hypotheses with probabilities),
available tools with descriptions and costs, investigation history (tools called and key findings), and
remaining budget. The judge prompt includes: tool name and structured output, active hypothesis list,
and scoring guidelines requesting JSON-formatted scores in {−4,−2, 0,+2,+4}.

A.8 Computational Cost Analysis

Table 10 compares computational costs across agentic methods. All methods use GPT-4o-mini
($0.15/1M input tokens, $0.60/1M output tokens). Each diagnostic step requires two LLM calls:
one for tool selection (planner) and one for evidence interpretation (judge for DiagAgent, implicit
reasoning for ReAct).
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Table 10: Computational cost comparison (GPT-4o-mini, $0.15/1M input, $0.60/1M output).
Method Steps Input/step Cost Acc. Cost/Corr.

ReAct 8.0 ∼500 $0.0009 52% $0.0017
DiagAgent 7.6 ∼800 $0.0014 80% $0.0018
DiagAgent + RAP 7.6 ∼950 $0.0016 85% $0.0019

Cost Breakdown. Each step requires two LLM calls: planner (∼380 tokens) and judge (∼420
tokens). RAP adds ∼150 tokens for few-shot examples. ReAct uses simpler prompts (∼250
tokens/call). DiagAgent’s higher per-step cost stems from the detailed scoring rules in the judge
prompt, which enable structured belief updates.

Cost-Effectiveness. ReAct achieves lowest cost-per-correct-diagnosis ($0.0017) but fails on process
faults (6% accuracy). DiagAgent’s value lies in diagnosing faults that simpler methods cannot detect—
the 69% process fault accuracy justifies the modest cost increase for industrial applications where
misdiagnosis is expensive.
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