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Abstract

Generating RNA sequences that effectively bind to target proteins is a pivotal chal-
lenge in bioinformatics with significant implications for therapeutic development
and understanding biological mechanisms. This work focuses on enhancing the
performance of a pre-fine-tuned T5 encoder-decoder transformer model for protein-
conditional RNA generation. We introduce a novel application of Group Relative
Policy Optimization (GRPO), a state-of-the-art reinforcement learning (RL) tech-
nique, to refine the generation process. A key component of our framework is
a custom-designed, multi-faceted reward function that incorporates scores from
a newly trained protein-RNA binding classifier, along with biologically relevant
metrics such as GC content and Minimun Free Energy (MFE) of the generated
RNA sequences. The binding classifier itself is trained on positive examples from
the CLIPDB dataset and negative examples generated through data augmenta-
tion by shuffling RNA sequences. By leveraging GRPO with this tailored reward
system, we aim to guide the T5 model towards producing RNA sequences with
improved binding affinity and structural stability, thereby advancing the capabilities
of computational RNA design.

1 Introduction

The interaction between RNA molecules and proteins is fundamental to a vast array of cellular
processes, including gene regulation, RNA processing, and translation [1]. Dysregulation of these
interactions is often implicated in various diseases, making the ability to design RNA sequences that
can specifically bind to target proteins a critical area of research for therapeutic interventions and
synthetic biology [2]. While traditional experimental methods for identifying such RNA aptamers
can be laborious and costly, computational approaches, particularly those leveraging deep learning,
offer a promising avenue for accelerated discovery.

Recent advancements in transformer-based language models have demonstrated remarkable success
in modeling biological sequences, capturing complex patterns and dependencies within protein and
nucleic acid "languages" [2]. These models can be fine-tuned for specific generative tasks, such as
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producing RNA sequences conditioned on a given protein target. Our prior work involved fine-tuning
a T5 encoder-decoder model on protein-RNA pairs from datasets like CLIPDB [3] to generate
potential RNA binders. However, supervised fine-tuning alone may not fully optimize for desired
downstream properties like binding strength or structural stability.

Reinforcement learning (RL) has emerged as a powerful paradigm for optimizing generative models
towards specific objectives, going beyond what can be achieved with static datasets. Techniques like
Proximal Policy Optimization (PPO) [4] and more recent advancements such as Direct Preference
Optimization (DPO) [5] and Group Relative Policy Optimization (GRPO) [6, 7] have shown success
in aligning large language models (LLMs) with human preferences or complex reward signals.
Inspired by the success of GRPO in enhancing reasoning capabilities in LLMs like DeepSeek-R1
(DeepSeekCoder in some contexts) [7], we propose to adapt this methodology for our RNA generation
task.

This paper details our approach to enhance a pre-fine-tuned T5 model for RNA generation using
GRPO. Our contributions are threefold: 1) The development of a dedicated protein-RNA binding
classifier to provide a quantitative measure of binding likelihood, trained on curated positive data from
CLIPDB and augmented negative data generated by shuffling. 2) The design of a composite reward
function that integrates the classifier’s binding score with crucial biophysical properties of RNA: GC
content for structural integrity and MFE for thermodynamic stability. 3) The implementation and
application of the GRPO algorithm to an encoder-decoder transformer for this specific bioinformatics
task, which, to our knowledge, is a novel application area for GRPO in biomolecular sequence design.
We hypothesize that this RL-enhanced approach will lead to the generation of RNA sequences with
superior binding characteristics and stability compared to the base fine-tuned model and other baseline
approaches.

The remainder of this report is organized as follows: Section 2 reviews relevant literature. Section 3
describes our methodology, including the base model, binding classifier, reward function, and GRPO
implementation. Section 4 presents our experimental results. Section 5 discusses the implications of
our findings, and Section 6 concludes the report.

2 Related Work

Our work builds upon advances in three primary areas: transformer models for bioinformatics,
reinforcement learning for large language models, and the application of RL in biological sequence
design.

2.1 Transformer Models in Bioinformatics

Transformer architectures [8] have become a cornerstone in bioinformatics for both understanding
and generating biological sequences. Protein language models such as ProtTrans [9] and ProtGPT2
[10] pre-train transformers on vast protein sequence databases, learning rich representations that
capture the "language of life" and can generate novel, plausible protein sequences. These embeddings
have proven effective for various downstream prediction tasks.

Similarly, transformers have been applied to RNA sequence modeling. GenerRNA [11] introduced
a large-scale pre-trained GPT-2 style model for de novo RNA design, demonstrating the ability to
generate novel RNA sequences with realistic structural features. RNAGEN [12], from CicekLab at
Bilkent, employed a Generative Adversarial Network (GAN) with a WGAN-GP architecture for RNA
generation, capable of incorporating external predictors as guidance. More recently, RNAtranslator
[13], also a CicekLab work, framed protein-conditional RNA design as a sequence-to-sequence
translation task, using an encoder-decoder transformer to generate RNA sequences likely to interact
with a given protein input. Our base model aligns with this conditional generation paradigm.

2.2 Reinforcement Learning for Large Language Models

RL has been instrumental in fine-tuning LLMs to align with human preferences or specific task
objectives, a process often referred to as RLHF (RL from Human Feedback). PPO [4] is a widely
adopted algorithm for this, known for its stability, and was famously used in models like InstructGPT
and ChatGPT. However, PPO-based RLHF can be complex and resource-intensive.
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To address these challenges, alternative methods have emerged. DPO [5] reframes preference-based
alignment as a simpler classification problem, often matching or exceeding PPO performance with
greater stability. GRPO [6], introduced by Shao et al. (2024) for DeepSeekMath, enhances training
stability and efficiency by using relative rewards from grouped trajectories. Guo et al. (2024) further
utilized GRPO in DeepSeekCoder (also referred to as DeepSeek-R1 contextually) [7], demonstrating
its ability to induce structured reasoning behaviors even with self-supervised rewards, eliminating the
need for a pre-learned reward model in some cases. Our choice of GRPO is motivated by these recent
successes and its potential for stable optimization with complex, potentially noisy reward signals
from biological predictors.

2.3 Reinforcement Learning in Bioinformatics

RL has also found applications in directly optimizing biological sequences. Early work by Eastman
et al. (2018) [14] used deep RL for the RNA inverse folding problem, training a policy network to
design sequences that fold into a target secondary structure. Subsequent works like LEARNA [15]
and EternaRL [16] (as cited in [17]) improved upon this, and DRAG [18] introduced a hierarchical
graph-based RL agent for complex RNA topologies.

In protein engineering, ProteinRL [19] used policy-based RL to guide a generative PLM towards
desired sequence properties like charge or solubility. Stocco et al. (2023) [20] (note: year corrected
based on common citation patterns, please verify) applied a DPO variant (DPO_pLM) to align a
protein generator with an external oracle (binding affinity predictor), rapidly identifying high-affinity
binders. These examples demonstrate RL’s potential to explore vast sequence spaces and optimize for
functional properties, a capability we aim to harness for RNA-protein binding. Our work distinguishes
itself by applying GRPO to an encoder-decoder architecture for conditional RNA generation, guided
by a multi-component reward including a custom-trained binding classifier.

3 Methods

Our methodology integrates a pre-fine-tuned T5 model with a novel protein-RNA binding classifier, a
multi-component reward system, and GRPO algorithm for reinforcement learning-based refinement.

Figure 1: T5 Model Architecture

3.1 Base Model and Tokenization

The foundation of our work is a T5 encoder-decoder transformer model, specifically
T5ForConditionalGeneration [21], which was previously pretrained and fine-tuned for the task
of generating RNA sequences conditioned on a protein sequence input. This base model features an
architecture with a hidden size (dmodel) of 512, a feed-forward network dimension (dff ) of 1024,
and key/value dimensions (dkv) of 64. Both the encoder and decoder stacks consist of 6 layers, each
employing 12 attention heads. The achitecture of T5 is shown in Figure 1.

For sequence processing, custom Byte Pair Encoding (BPE) tokenizers were trained independently
for protein and RNA sequences. Each tokenizer has a vocabulary size of 1000. The model is
configured to handle a maximum sequence length of 1024 tokens. The initial supervised fine-tuning
of this T5 model utilized protein-RNA interaction data sourced from the CLIPDB dataset [3]. This
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dataset provides interacting sequences in FASTA format, and the corresponding protein sequences
for CLIPDB entries were obtained through database scraping. The specific pre-fine-tuned model
checkpoint used in this work can be found in the additional package we provide.

3.2 Protein-RNA Binding Classifier

To provide a quantitative reward signal indicative of binding likelihood, we developed and trained a
dedicated protein-RNA binding classifier. This classifier is designed to predict a binding probability
score, ranging from 0 to 1, for a given protein-RNA pair.

The training data for the classifier was meticulously prepared. Positive interaction examples were
directly sourced from the CLIPDB dataset. To generate negative samples and ensure a balanced
dataset, RNA sequences from these positive pairs were shuffled. This process disrupts potential
binding sites while preserving the original nucleotide composition, thereby creating a corresponding
negative RNA sequence for each positive protein-RNA pair [22]. The classifier expects input in the
format protein_sequence$rna_sequence.

Feature representation for the classifier involves generating embeddings for both protein and RNA
sequences using our base T5 model. Protein embeddings are derived by taking the mean-pooled
output of the encoder’s hidden states for an input protein sequence. RNA embeddings are obtained
from the decoder’s output, specifically by using the hidden state of the CLS token (the first token
of the last layer) for an input RNA sequence. Both protein and RNA embeddings undergo L2
normalization before being fed to the classifier.

The classifier, referred to as MLPBindingClassifier, is a Multi-Layer Perceptron (MLP) that
ingests concatenated L2-normalized protein and RNA embeddings. This combined embedding is
passed through three fully connected layers with 512, 256, and 128 neurons, respectively. Each dense
layer is followed by a ReLU activation and a dropout layer (dropout rate = 0.2) to mitigate overfitting.
The final layer produces a single scalar output via a sigmoid activation, representing the predicted
binding probability. The MLPBindingClassifier was trained for 65 epochs on a dataset of 100 000
positive and 100 000 negative examples using the Adam optimizer with a learning rate of 1× 10−5

and a weight decay of 0.01 (L2 regularization), optimizing the binary cross-entropy loss on NVIDIA
2080 Ti GPUs.

3.3 Reward Function Design

To guide the reinforcement learning agent effectively, we designed a composite reward function,
Rtotal, aimed at promoting RNA sequences that exhibit not only a high likelihood of binding to the
target protein but also possess sound structural properties. This total reward is a weighted sum of
three distinct components:

Rtotal = wbinding ·Rbinding + wGC ·RGC + wMFE ·RMFE . (1)

In our experiments, the weights were set to wbinding = 0.2, wGC = 0.4, and wMFE = 0.4, reflecting
a balanced consideration of binding and structural stability.

The first component, the Binding Affinity Reward (Rbinding), is directly derived from the output of
our trained protein-RNA binding classifier, as described in the preceding section. This score, ranging
from 0 to 1, quantifies the predicted binding likelihood between the input protein and the generated
RNA sequence.

The second component, the GC Content Reward (RGC ), encourages the generation of RNA sequences
with a Guanine-Cytosine (GC) content [23] falling within an optimal range, typically associated with
stable secondary structures. We define this range as 40% to 60% GC content. The reward RGC(s)
for an RNA sequence s is formulated as:

RGC(s) =


1.0 if 0.4 ≤ GC_content(s) ≤ 0.6

1.0− |0.4−GC_content(s)|
0.4 if GC_content(s) < 0.4

1.0− |GC_content(s)−0.6|
1.0−0.6 if GC_content(s) > 0.6,

(2)

where GC_content(s) is the fractional GC content of sequence s.

The third component, the MFE Reward (RMFE), incentivizes RNA sequences predicted to form
thermodynamically stable secondary structures[24]. The MFE for a sequence s is calculated using
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the ViennaRNA package [24]. To account for sequence length variations, we normalize the MFE
by the sequence length: MFEnorm(s) = MFE(s)/length(s). A lower (more negative) MFE value
generally indicates greater structural stability. We set a target for good stability at a normalized MFE
of less than -0.2 kcal/mol per nucleotide. The reward RMFE(s) is then defined as:

RMFE(s) =


1.0 if MFEnorm(s) < −2
MFEnorm(s)/− 2 if − 2 ≤MFEnorm(s) ≤ 0

0.0 if MFEnorm(s) > 0.

(3)

To ensure computational efficiency, particularly when processing batches of generated sequences, the
calculation of these individual reward components is parallelized across available CPU cores using
the Python ‘multiprocessing‘ library.

3.4 Group Relative Policy Optimization (GRPO)

We employ GRPO [6, 7] to fine-tune our T5 model. GRPO is an on-policy actor-critic algorithm
that aims to improve policy updates by considering relative advantages within a group of sampled
trajectories.

The GRPO algorithm aims to optimize the following objective, where ϵ and β are hyperparameters:

JGRPO(θ) = E[q ∼ P (Q), {oi}Gi=1 ∼ πθold(O|q)]

1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

{
min

[
πθ(oi,t|q, oi,t)
πθold(oi,t|q, oi,t)

Âi,t, clip

(
πθ(oi,t|q, oi<t)

πθold(oi,t|q, oi,<t)
, 1− ε, 1 + ε

)
Âi,t

]
− βDKL [πθ||πref ]

}

The core GRPO algorithm as applied in our work is summarized in Algorithm 1.

Algorithm 1 Iterative Group Relative Policy Optimization

Require: Policy network πθ, reference policy πref , old policy πold, number of generations per
prompt G, KL coefficient β, clipping parameter ϵ, inner loop updates µ.

1: Initialize πθ, πref ← πθ, πold ← πθ

2: for each training iteration do
3: Sample a batch of protein prompts Pi from ‘TRAINDATA‘
4: each protein p ∈ Pi

5: Generate G RNA sequences Sp,g with log probabilities from πold(s|p)
6: Calculate rewards R(Sp,g) for prefixes of each sequence using the reward function.
7: Calculate advantages A(Sp,g) by normalizing rewards per time-step.
8: for j = 1 to µ do
9: Compute policy ratios rt(θ) =

πθ(at|st)
πold(at|st)

10: Compute clipped surrogate objective:
11: LCLIP (θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)]
12: Compute KL penalty: LKL(θ) = β ·DKL(πθ(·|s)||πref (·|s))
13: Update πθ by maximizing JGRPO(θ) = LCLIP (θ)− LKL(θ)

14: πold ← πθ

15:

GRPO does not use any value model. Instead, it calculates advantages using rewards of the group as
seen in Figure 2. This approach allows GRPO to focus on cooperative behavior by leveraging shared
outcomes, rather than relying on value estimates. By using actual group rewards, GRPO encourages
policies that directly optimize for collective performance.
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Figure 2: Comparison between GRPO and PPO. GRPO does not use any value model [6].

Implementation Details. The GRPO algorithm was implemented with our T5 model serving as
the policy network (πθ) being trained. A frozen copy of the initial pre-fine-tuned T5 model (before
GRPO) was maintained as the reference policy (πref ). An additional copy, the old policy (πold), was
used for sampling trajectories at the beginning of each GRPO iteration and was synchronized with πθ

after µ inner loop updates.

During each training iteration, for every protein prompt drawn from the training data, we sample
K = 8 complete RNA sequences {y(k)1:Tk

}Kk=1 from the current old policy πold. To enable fine-grained
credit assignment at each generation step, we compute the total reward (Equation 1) not only on the
full sequence but also on every prefix. Concretely, for each sampled sequence y

(k)
1:Tk

and each time

step t ∈ {1, . . . , Tk}, we form the prefix y
(k)
1:t and evaluate

Rtotal
(
y
(k)
1:t

)
.

This produces a reward signal at each position t that reflects the quality of the partial sequence up to
that token. We then normalize these prefix-level rewards across the batch and time steps (applying a
mask to ignore padded positions) to obtain the advantage estimates Â(k)

t used in the policy update.
This prefix-based scheme ensures that each token receives credit proportional to its contribution to
both binding affinity and structural criteria.

The policy network πθ was then updated over µ inner loop steps (with µ = 5, determined by Optuna)
to maximize the GRPO objective function. This objective incorporates a clipped surrogate term
and a Kullback-Leibler (KL) divergence penalty against the reference policy πref to ensure training
stability. The KL divergence coefficient β was set to approximately 0.0496, and the PPO-style
clipping parameter ϵ was set to approximately 0.1736, both values derived from hyperparameter
optimization. The AdamW optimizer was employed for policy updates with a learning rate 1× 10−5.

Key GRPO hyperparameters, namely β, ϵ, and µ, were systematically optimized using the Optuna
framework [25]. All training procedures were executed on NVIDIA TITAN GPUs. Comprehensive
logging of the training progress, including various loss components and the individual constituents of
our composite reward, was performed using Weights & Biases.

3.5 Experimental Setup

All experiments were conducted under identical conditions to facilitate fair comparison of three
models: our GRPO-enhanced T5 model, the base T5 model (fine-tuned prior to GRPO refinement),
and the literature benchmark RNAGen [12]. Performance was evaluated on a held-out set of protein
prompts. During each iteration of reinforcement learning, we used a batch size of 40 protein prompts
and sampled eight RNA sequences per prompt from the policy. Protein inputs were truncated to 1 024
tokens, and RNA outputs were limited to 256 tokens. The GRPO refinement was applied for three
epochs over the training data.

To assess model behavior, we computed four metrics on the generated RNA sequences: the mean GC
content to evaluate nucleotide composition and its influence on structural stability; the distribution of
MFE, to examine predicted secondary-structure stability; the mean composite reward value of each
token (Equation 1) to capture the joint contributions of binding affinity and structural criteria; and the
mean DeepCLIP score [22], to provide an independent measure of predicted RNA-protein binding
strength based on the supervised model.

6



4 Results

This section presents the key results from our experiments, including the performance of the bind-
ing classifier, GRPO training dynamics, hyperparameter optimization, and a comparison of RNA
sequences generated by the base model, the baseline model, versus the GRPO-enhanced model.

4.1 Binding Classifier Performance

The protein–RNA binding classifier serves as the foundational reward signal for our RL agent. Trained
over 65 epochs, the MLPBindingClassifier exhibited a steady decline in validation loss, eventually
converging toward a plateau. This trend indicates that the classifier successfully learned to distinguish
between binding and non-binding pairs.

4.2 Optuna Hyperparameter Sweep and GRPO Training with Tuned Parameters

We first conducted a preliminary Optuna hyperparameter sweep over 10 trials to identify promising
GRPO configurations. The search explored a KL-divergence coefficient β sampled uniformly from
[0.01, 0.10], a clipping parameter ϵ sampled uniformly from [0.05, 0.20], and an integer number of
inner-loop updates µ drawn from the range [3, 8].

Figure 3 presents the evolution of the mean composite reward and its standard deviation across these
trials, illustrating which parameter sets yielded superior performance. From this analysis, the trial
achieving the highest average reward was selected for further evaluation.

(a) Mean composite reward across Optuna
trials

(b) Reward standard deviation across Optuna
trials

Figure 3: Optuna sweep results over 10 trials: (a) evolution of mean composite reward; (b) evolution
of reward standard deviation.

Table 1 lists the optimal hyperparameter values identified by Optuna, which were then applied in an
extended GRPO training run.

Table 1: Optimal GRPO hyperparameters found by Optuna.
Hyperparameter Optimal Value

β (KL coefficient) 0.0496
ϵ (clipping) 0.1736
µ (inner-loop updates) 5

Using these tuned hyperparameters, we performed an extended GRPO training run. As shown in
Figure 4, the mean composite reward rapidly increased to approximately 0.70 before plateauing, while
the reward standard deviation fell below 0.02, indicating consistently high-quality RNA sequence
generation under the optimized configuration.
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(a) Mean composite reward (tuned hyper-
params)

(b) Standard deviation of composite reward
(tuned hyperparams)

Figure 4: GRPO training dynamics using Optuna-tuned parameters: (a) mean reward reaches ∼0.70
within 8 000 steps; (b) reward variability drops below 0.02, demonstrating stable optimization.

4.3 Comparison of Generated RNA Sequences

To evaluate the impact of GRPO fine-tuning on RNA generation, we compared three models on a
held-out set of protein prompts: (i) our GRPO-enhanced T5 model, (ii) the base T5 model fine-tuned
prior to GRPO refinement (“Base T5 Model”), and (iii) the GAN-based RNAGEN model from the
literature [12] (“RNAGEN”). We generated eight RNA sequences per prompt for each model and
computed several key metrics, including composite reward, DeepCLIP score, GC content, MFE, and
sequence generation loss against ground truth.

Binding Affinity Figure 5 presents the DeepCLIP binding-score distributions for RNA sequences
generated by the Base T5 and our GRPO-Tuned T5 models against the RBM5 protein. Consistent
with the composite-reward improvements, our tuned model not only shifts the median binding score
higher but also yields a tighter distribution of stronger predicted interactions.

Figure 5: DeepCLIP binding scores for RNA sequences generated by the Base T5 and GRPO-Tuned
T5 models evaluated on the RBM5 protein.

Table 2 gives the mean DeepCLIP score for RBM5. Our GRPO-Tuned T5 model achieves a
substantially improved DeepCLIP binding score (0.2478 vs. 0.1539), indicating more favorable
overall sequence generation and stronger RNA–protein interactions.

Table 2: Performance summary for the Base T5 and GRPO-Tuned T5 models on RBM5 binding.
Metric Base T5 Model GRPO-Tuned T5

Mean DeepCLIP Score (RBM5) 0.1539 0.2478

GC Content Analysis The GC content of generated sequences is crucial for RNA stability and
function. Figure 6 displays the GC content distributions for the three models. Our Model centers
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around a mean of 53.83% GC content with a notably low standard deviation of 2.40%, indicating
tight control in the optimal range. The Base Model trends higher, with a mean GC content of 62.16%
and greater variability (STD 7.25%), while RNAGEN sequences cluster around a mean of 50.08%
with moderate spread (STD 7.03%). These statistics underscore our model’s superior precision in
targeting a biologically ideal GC content.

Figure 6: Violin plot of GC content distribution for sequences generated by Our Model, Base Model,
and RNAGEN. Our Model exhibits the tightest distribution around the optimal GC range.

MFE Analysis We analyzed both per-token MFE and overall normalized MFE to assess the
predicted thermodynamic stability of the generated RNA sequences.

Figure 7b shows the per-token MFE distributions for Our Model and the Base T5 Model. Our Model
achieves a mean per-token MFE of –0.2992 (Std = 0.0729), which is substantially more negative
than the Base T5 Model’s mean of –0.1411 (Std = 0.0650). This indicates that, on a per-token basis,
our model generates sequences predicted to be more stable. The distributions confirm that our tuned
model shifts the mean MFE further negative while maintaining a relatively tight spread.

(a) Comparison of mean MFE (kcal/mol) for
RNA sequences.

(b) Per-token MFE distributions for se-
quences generated by Our Model (GRPO-
Tuned-T5) and the Base T5 Model.

Figure 7: (a) Mean MFE comparison across models. (b) Per-token MFE distributions. Our model
shows a clear shift towards more negative (more stable).

The overall MFE for sequences from all three models is compared in Figure 7a. Our Model achieves
the most negative mean MFE (–30 ± 14.4 kcal/mol), significantly outperforming the Base T5 Model
(–17 ± 2.1 kcal/mol) and RNAGEN (–5 ± 3.5 kcal/mol). While Our Model has a higher standard
deviation for overall MFE compared to the Base T5 model, its mean MFE indicates a strong tendency
towards generating more stable structures.

4.4 Comparison of Model Performance

Finally, we present a consolidated comparison of the Base T5 model and Our Model (GRPO-Tuned
T5) based on two critical metrics: the Mean Composite Reward, which evaluates the overall reward-
based objective, and the Loss Values, which assess the alignment with the original ground truth
sequences.
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Table 3: Comparison of Mean Composite Reward and Loss Values.
Metric Base T5 Model Our Model (GRPO-Tuned T5)

Mean Composite Reward 0.56 0.69
Loss Values 3.1664 / 1.1859 3.3045 / 1.2283

As shown in Table 3, Our Model achieves a higher mean composite reward, demonstrating improved
performance under the reinforcement learning objective. While the loss values of Our Model are
slightly higher than those of the Base T5 Model, this increase is expected since GRPO optimization
does not explicitly minimize the supervised loss. Nevertheless, the moderate change in loss suggests
that the fine-tuning process preserves much of the learned distribution from the original supervised
training, while effectively shifting the model toward enhanced RNA design objectives.

In summary, the GRPO fine-tuning process significantly enhances the T5 model’s ability to generate
RNA sequences that are not only predicted to bind target proteins more effectively (as shown by
DeepCLIP scores) but also possess desirable nucleotide composition (GC content) and thermodynamic
stability (MFE), while largely retaining fidelity to the original generation task. The improvements
are evident both in mean performance and, for per-token MFE, in the distribution of sequence
characteristics.

5 Discussion

Our comparative analysis demonstrates that GRPO fine-tuning, guided by a composite reward
function, substantially improves the quality of protein-binding RNA sequences generated by a pre-
trained T5 model. As shown in Table 3, the GRPO-enhanced model (Our Model) achieves a higher
mean composite reward compared to the Base T5 Model, indicating more successful optimization.
This gain is driven by a more balanced and tightly controlled GC content (53.83 % ± 2.40 % vs. 62.16
% ± 7.25 % for the Base Model and 50.08 % ± 7.03 % for RNAGEN; Figure 6) and by improved
thermodynamic stability, as suggested by favorable shifts in MFE characteristics. The distribution of
normalized free energy values (Figure 7a) shows that Our Model consistently generates sequences
with stronger folding potential. Furthermore, the per-token MFE distribution (Figure 7b) reveals a
noticeable shift towards more stable structures relative to the Base Model. Importantly, the analysis
of loss values against ground truth indicates that these benefits were achieved without sacrificing
the model’s original language generation capabilities. Collectively, these results demonstrate that
our reinforcement learning agent is capable of generating RNA sequences that are both structurally
robust and compositionally suitable.

The success of this approach hinges on two key components. First, the binding classifier—trained on
high-confidence interactions from CLIPDB and shuffled negatives—provides a biologically grounded
reward signal. Second, Group Relative Policy Optimization, enhanced with KL-regularization and
hyperparameters fine-tuned via Optuna (Table 1), ensures smooth and effective policy learning. The
observed rise and stabilization of composite rewards, along with declining reward variance over
training epochs (Figure 4), demonstrate GRPO’s capability to guide the policy toward favorable
solutions while avoiding destabilizing shifts.

By weighting structural criteria more heavily than binding affinity (wGC = wMFE = 0.4 vs.
wbinding = 0.2), our reward design emphasizes foldability and compositional constraints critical
for RNA function. The improved GC distribution—both in mean and notably lower deviation for
Our Model—and more negative, tighter MFE profiles (Figures 7b and 7a) underscore the value
of this multi-objective formulation. In contrast, the Base Model—fine-tuned solely on supervised
data—remains biased toward excessively high GC content with substantial variability, while RNA-
GEN exhibits poor MFE scores and greater variance in GC content, with many values falling outside
the desired range and lacking consistency.

Limitations and Challenges

Despite these encouraging results, our study faces several limitations and challenges. First, the
reliance on an in silico protein–RNA binding classifier means that any inaccuracies or biases in its
outputs can misdirect the RL agent. Without experimental validation of binding affinity, the degree to
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which our generated sequences will translate into true biological activity remains uncertain. Second,
the reward weights were chosen heuristically; a more systematic approach—such as automated weight
optimization or multi-objective RL—could better balance binding versus structural objectives. Third,
achieving the right balance between exploration and exploitation during RL proved challenging.
While GRPO’s KL-penalty enhances stability, it may also limit the diversity of generated sequences.
Finally, the computational cost of fine-tuning a large transformer model with multiple rollouts per
update step constrains both the breadth of our experiments and the granularity of hyperparameter
searches.

Future Work

Future work will address these limitations by improving the biological fidelity and robustness of our
framework. We plan to enhance the binding classifier through integration of experimental binding
data and advanced architectures, thereby refining the primary reward signal. We will also explore
adaptive reward-weighting schemes and more sophisticated reward shaping strategies to dynamically
balance competing objectives. Alternative RL algorithms, such as proximal policy optimization
(PPO) or preference-based approaches, may offer further stability or diversity in sequence generation.
Crucially, we intend to validate our computationally designed RNA candidates in vitro to confirm
binding affinities and structural predictions. Finally, incorporating three-dimensional structural
information and leveraging co-evolutionary constraints could further improve the functional relevance
of generated sequences. Overall, these extensions will advance the integration of deep reinforcement
learning into biomolecular design workflows.

6 Conclusion

In this study, we successfully applied GRPO to enhance a T5-based encoder-decoder model for
generating RNA sequences that bind to specific protein targets. By developing a novel protein-RNA
binding classifier and integrating its predictions into a multi-component reward function considering
RNA GC content and Minimum Free Energy, we guided the RL agent towards producing sequences
with improved characteristics. Our findings indicate that the GRPO-enhanced model generates RNA
sequences with higher predicted binding scores and better structural properties compared to both the
initial fine-tuned model and a simpler baseline approach. This research highlights the promise of
leveraging advanced RL algorithms for biomolecular design and contributes a novel application of
GRPO in bioinformatics. Future work will focus on refining reward mechanisms, classifier accuracy,
and experimental validation.
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A Appendix A: Member Contributions

Each group member’s contributions to the project are detailed below:

• Yusuf Kesmen: Led the implementation and adaptation of the GRPO algorithm for the T5
model. Conducted hyperparameter tuning using Optuna and analyzed RL training dynamics.
Primary contributor to the technical sections of the manuscript (Methods, Results) and
overall technical lead.

• Alpsencer Özdemir: Developed and trained the protein-RNA binding classifier, including
data preparation (positive/negative samples, embedding generation). Designed and imple-
mented the individual components of the reward function (GC content, MFE). Developed
and evaluated the baseline model. Contributed to the Introduction and Related Work sections
of the manuscript.

• Yavuz Alp Sencer Öztürk: Managed the initial fine-tuning of the base T5 model and the
creation/management of custom BPE tokenizers. Integrated various model components
and set up the computational environment and data pipelines. Coordinated the report and
presentation preparation, primary contributor to the Discussion, Conclusion, and Appendix
sections of the manuscript.

All members contributed to the conceptualization of the project, literature review, debugging, and
final report preparation.

B Appendix B: Code Overview

*

File: inference.py

Listing 1: Code Snippet
1 import os
2 import torch
3 import RNA
4 import numpy as np
5 import matplotlib.pyplot as plt
6 from tqdm import tqdm
7 from transformers import T5ForConditionalGeneration
8 from custom_tokenizer import get_tokenizer
9

10 # Paths to your three checkpoints and their short names

11 CKPT_DIRS = [
12 #

"/data6/alpsencer/reinforce_rna/grpo -project/results/epoch_01_step_000050",
13 #

"/data6/alpsencer/reinforce_rna/grpo -project/results/epoch_03_step_000150",
14 #

"/data6/sobhan/rllm/results/train/t5/run3_20240822 -152114/ checkpoints/checkpoint -349800" ,
15 "/data6/alpsencer/reinforce_rna/grpo -project/results/epoch_03_step_000900"
16 ]
17 MODEL_NAMES = ["step900"]
18

19 # Tokenizer files
20 PROTEIN_TOKENIZER_PATH =

"/data6/alpsencer/tokenizers/bpe_protein_1000_1024.json"
21 RNA_TOKENIZER_PATH =

"/data6/alpsencer/tokenizers/bpe_rna_1000_1024.json"
22

23 # Validation data
24 VALIDATION_PATH = "/data6/alpsencer/reinforce_rna/validation_rl.txt"
25
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26 # Generation parameters
27 VOCAB_SIZE = 1000
28 SEQ_SIZE = 1024
29 MAX_PROMPT_LENGTH = 1024
30 MAX_COMPLETION_LENGTH= 1024
31 NUM_RETURN_SEQUENCES = 1
32 TOP_P = 1.0
33 TEMPERATURE = 0.7
34 BEAM_SIZE = 1
35

36 # Helper functions
37 def map_to_bjuz(rna_acgu_sequence):
38 return (rna_acgu_sequence.replace("A","b")
39 .replace("C","j")
40 .replace("U","u")
41 .replace("G","z"))
42

43 def map_to_acgu(rna_bjuz_sequence):
44 s = rna_bjuz_sequence.replace(" ", "")
45 return (s.replace("b","A")
46 .replace("j","C")
47 .replace("u","U")
48 .replace("z","G"))
49

50 def load_validation_data(filepath):
51 proteins , rnas = [], []
52 with open(filepath) as f:
53 for line in f:
54 line = line.strip()
55 if not line: continue
56 prot , rna = line.split("," ,1)
57 proteins.append(prot)
58 rnas.append(rna)
59 return proteins , rnas
60

61 def calculate_gc_content(seq):
62 seq = seq.upper()
63 gc = seq.count("G") + seq.count("C")
64 return (gc / len(seq)) * 100 if seq else 0
65

66 def calculate_mfe(seq):
67 try:
68 _, mfe = RNA.fold(seq)
69 return mfe
70 except:
71 return None
72

73 def calculate_mfe_per_token(seq):
74 """Calculate MFE normalized by sequence length"""
75 mfe = calculate_mfe(seq)
76 if mfe is not None and seq:
77 return mfe / len(seq)
78 return None
79

80 # Main evaluation loop
81 def main():
82 os.makedirs("analysis_outputs_2", exist_ok=True)
83 proteins , ground_truths = load_validation_data(VALIDATION_PATH)
84

85 results = {}
86 for ckpt , name in zip(CKPT_DIRS , MODEL_NAMES):
87 print(f"\nLoading model ’{name}’ from {ckpt}")
88 device = "cuda" if torch.cuda.is_available () else "cpu"
89 model =

T5ForConditionalGeneration.from_pretrained(ckpt).to(device)
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90 model.eval()
91

92 # tokenizers
93 tok_p = get_tokenizer("bpe", VOCAB_SIZE , SEQ_SIZE ,
94 tokenizer_path=PROTEIN_TOKENIZER_PATH)
95 tok_r = get_tokenizer("bpe", VOCAB_SIZE , SEQ_SIZE ,
96 tokenizer_path=RNA_TOKENIZER_PATH)
97 tok_p.pad_token_id = tok_r.pad_token_id = 0
98

99 gc_vals , mfe_vals , loss_vals = [], [], []
100 mfe_per_token_vals = [] # Add list for MFE per token values
101

102 for prot , gt_acgu in tqdm(zip(proteins [:10],
ground_truths [:10]) ,

103 total=min(10, len(proteins)),
104 desc=name):
105 # --- tokenize protein input ---
106 enc = tok_p.tokenize(prot)
107 ids = enc.ids[: MAX_PROMPT_LENGTH]
108 mask = enc.attention_mask [: MAX_PROMPT_LENGTH]
109 pad = MAX_PROMPT_LENGTH - len(ids)
110 ids += [tok_p.pad_token_id ]*pad
111 mask += [0]* pad
112 inp = {
113 "input_ids": torch.tensor ([ids

],dtype=torch.long).to(device),
114 "attention_mask":

torch.tensor ([mask],dtype=torch.long).to(device)
115 }
116

117 # --- generate RNA ---
118 gen_kwargs = {
119 "max_new_tokens": MAX_COMPLETION_LENGTH ,
120 "num_return_sequences": NUM_RETURN_SEQUENCES ,
121 "do_sample": BEAM_SIZE ==1,
122 "top_p": TOP_P ,
123 "temperature": TEMPERATURE ,
124 "num_beams": BEAM_SIZE ,
125 "early_stopping": BEAM_SIZE >1
126 }
127 with torch.no_grad ():
128 out_ids = model.generate (**inp , ** gen_kwargs)
129 bjuz = tok_r.decode(out_ids)[0] if

isinstance(tok_r.decode(out_ids), list) else
tok_r.decode(out_ids)

130 gen_acgu = map_to_acgu(bjuz)
131

132 # --- GC & MFE ---
133 gc = calculate_gc_content(gen_acgu)
134 mfe = calculate_mfe(gen_acgu)
135 mfe_per_token = calculate_mfe_per_token(gen_acgu) #

Calculate MFE per token
136 gc_vals.append(gc)
137 mfe_vals.append(mfe if mfe is not None else np.nan)
138 mfe_per_token_vals.append(mfe_per_token if mfe_per_token

is not None else np.nan) # Add MFE per token
139

140 # --- loss on ground truth ---
141 gt_bjuz = map_to_bjuz(gt_acgu)
142 lbl = tok_r.tokenize(gt_bjuz).ids[: MAX_COMPLETION_LENGTH]
143 pad2 = MAX_COMPLETION_LENGTH - len(lbl)
144 lbl += [tok_r.pad_token_id ]*pad2
145 labels = torch.tensor ([lbl],dtype=torch.long).to(device)
146 labels[labels == tok_r.pad_token_id] = -100
147 with torch.no_grad ():
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148 loss = model (**inp , labels=labels).loss.item()
149 loss_vals.append(loss)
150

151 # store
152 results[name] = {
153 "gc": gc_vals ,
154 "mfe": mfe_vals ,
155 "mfe_per_token": mfe_per_token_vals , # Add MFE per token

to results
156 "loss": loss_vals
157 }
158

159 # save raw data lists to txt
160 np.savetxt(f"analysis_outputs_2/gc_values_{name}.txt",

gc_vals , fmt="%.4f")
161 np.savetxt(f"analysis_outputs_2/mfe_values_{name}.txt",

mfe_vals , fmt="%.4f")
162 np.savetxt(f"analysis_outputs_2/mfe_per_token_values_{name}.txt",

mfe_per_token_vals , fmt="%.6f") # Save MFE per token
values

163 np.savetxt(f"analysis_outputs_2/loss_values_{name}.txt",loss_vals ,fmt="%.6f")
164

165 # summary table
166 with open("analysis_outputs_2/summary_metrics.txt","w") as f:
167 f.write("Model\tGC_mean\tGC_std\tMFE_mean\tMFE_std\tMFE_per_token_mean\tMFE_per_token_std\tLoss_mean\tLoss_std\n")
168 for name , m in results.items():
169 g, mf, mfpt , lo = np.array(m["gc"]), np.array(m["mfe"]),

np.array(m["mfe_per_token"]), np.array(m["loss"])
170 f.write(f"{name}\t"
171 f"{g.mean():.2f}\t{g.std():.2f}\t"
172 f"{mf.mean():.2f}\t{mf.std():.2f}\t"
173 f"{mfpt.mean():.6f}\t{mfpt.std():.6f}\t"
174 f"{lo.mean():.4f}\t{lo.std():.4f}\n")
175

176 # plots
177 # 1) Violin plot of GC content
178 plt.figure(figsize =(8,5))
179 parts = plt.violinplot(
180 [results[n]["gc"] for n in MODEL_NAMES],
181 showmeans=True , showmedians=True)
182 plt.xticks ([1,2,3], MODEL_NAMES)
183 plt.ylabel("GC content (%)")
184 plt.title("GC content by model")
185 plt.grid(alpha =0.3)
186 plt.savefig("analysis_outputs_2/gc_violin.png")
187 plt.close ()
188

189 # 2) MFE distribution
190 plt.figure(figsize =(8,5))
191 for name in MODEL_NAMES:
192 plt.hist(results[name]["mfe"], bins=30, alpha =0.5,
193 density=True , label=name)
194 plt.xlabel("MFE (kcal/mol)")
195 plt.ylabel("Density")
196 plt.legend ()
197 plt.title("MFE distributions")
198 plt.grid(alpha =0.3)
199 plt.savefig("analysis_outputs_2/mfe_dist.png")
200 plt.close ()
201

202 # 3) Loss distribution
203 plt.figure(figsize =(8,5))
204 for name in MODEL_NAMES:
205 plt.hist(results[name]["loss"], bins=30, alpha =0.5,
206 density=True , label=name)
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207 plt.xlabel("Loss (NLL)")
208 plt.ylabel("Density")
209 plt.legend ()
210 plt.title(" G r o u n d truth loss distributions")
211 plt.grid(alpha =0.3)
212 plt.savefig("analysis_outputs_2/loss_dist.png")
213 plt.close ()
214

215 # 4) MFE per token distribution
216 plt.figure(figsize =(8,5))
217 for name in MODEL_NAMES:
218 plt.hist(results[name]["mfe_per_token"], bins=30, alpha =0.5,
219 density=True , label=name)
220 plt.xlabel("MFE per token (kcal/mol per nucleotide)")
221 plt.ylabel("Density")
222 plt.legend ()
223 plt.title("MFE per token distributions")
224 plt.grid(alpha =0.3)
225 plt.savefig("analysis_outputs_2/mfe_per_token_dist.png")
226 plt.close ()
227

228 print("All metrics , plots and data have been saved under
./ analysis_outputs_2/")

229

230 if __name__ == "__main__":
231 main()

*

Directory: classifier/

File: classifier/binding_embedding_creator.py

Listing 2: Code Snippet
1 """
2 Embedding generator for protein and RNAs
3 Last modified: 13.04.2025
4 Modified by: Alpsencer & Yusuf
5 TODO: organize the code if necessary
6 """
7

8 import torch
9 from transformers import T5ForConditionalGeneration

10 from pathlib import Path
11 from tqdm import tqdm
12 from util.tokenizer import get_tokenizer # Update the path
13 import numpy as np # Add numpy for random split
14

15 from datasets import load_dataset
16 from copy import deepcopy
17 import pickle # Import pickle for incremental saving
18

19 MODEL_PATH =
"/data6/sobhan/rllm/results/train/t5/run3_20240822 -152114/ checkpoints/checkpoint -349800"

20 SOURCE_TOKENIZER =
"/data6/alpsencer/tokenizers/bpe_protein_1000_1024.json"

21 RNA_TOKENIZER = "/data6/alpsencer/tokenizers/bpe_rna_1000_1024.json"
22 MAX_LEN = 32
23 # TRAIN_DATA = "/ data6/sobhan/RLLM/dataset/rph/train_rp.txt"
24 TRAIN_DATA = "/data6/alpsencer/reinforce_rna/sample_100K.txt"
25 EVAL_DATA = "/data6/sobhan/RLLM/dataset/rph/eval_rp.txt"
26 PAIR_SAVE_DIR = "/data6/alpsencer/data/rllm_classifier_pairs"
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27 DATASET_NAME = "pairs_100K_eos"
28 BATCH_SIZE = 16
29 TRAIN_OUTPUT_FILENAME = f"{DATASET_NAME}_train.pkl" # Define output

filename with .pkl extension
30 TEST_OUTPUT_FILENAME = f"{DATASET_NAME}_test.pkl" # Define output

filename with .pkl extension
31 TRAIN_TEST_SPLIT = 0.95
32

33 def tokenize_dataset(sample , source_tokenizer , rna_tokenizer):
34 text = sample["text"]
35 # Basic error handling for malformed lines
36 try:
37 source , rna , pair = text.strip().split("$")
38 except ValueError:
39 # Return None or handle appropriately if lines might be

malformed
40 # For now , assume data is clean as per original code’s lack

of handling
41 # If errors occur , add more robust handling here.
42 # Example: return None and filter later
43 print(f"Warning: Skipping malformed line: {text.strip ()}") #

Keep minimal warning if needed , or remove
44 return None
45

46

47 rna = rna.replace("A", "b").replace("C", "j").replace("U",
"u").replace("G", "z")

48 source = source.lower ()
49

50 source_tokenized = source_tokenizer.tokenize(source)
51 rna_tokenized = rna_tokenizer.tokenize(rna)
52

53 # replace the first padding token with eos token
54

55

56 # need to set these to -100 to calculate the loss properly
57 # rna_labels = [-100 if i == 0 else i for i in rna_tokenized.ids]
58

59 # return {
60 # "input_ids ": source_tokenized.ids ,
61 # "attention_mask ": source_tokenized.attention_mask ,
62 # "labels ": rna_labels ,
63 # }
64 return {
65 "source_tokenized": source_tokenized ,
66 "rna_tokenized": rna_tokenized ,
67 "label": 1 if pair == "+" else 0,
68 }
69

70

71 def get_datasets(args , source_tokenizer , rna_tokenizer ,
iterable=True):

72

73 # Get the dataset
74 dataset = load_dataset(
75 "text",
76 data_files=args.train_data ,
77 split="train",
78 cache_dir="/data6/alpsencer/cache",
79 )
80

81 if iterable:
82 train_dataset = dataset.to_iterable_dataset ()
83 else:
84 train_dataset = dataset
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85

86 # # Filter dataset
87 filter_source_tokenizer = deepcopy(source_tokenizer)
88 filter_source_tokenizer.tokenizer.no_truncation ()
89 filter_rna_tokenizer = deepcopy(rna_tokenizer)
90 filter_rna_tokenizer.tokenizer.no_truncation ()
91

92 def _is_valid_sample(sample):
93 # Check for malformed lines first if tokenize_dataset can

return None
94 if sample is None or "text" not in sample:
95 return False
96 try:
97 source , rna , _ = sample["text"]. strip().split("$")
98 return (
99 len(filter_source_tokenizer.tokenize(source).ids) <=

1024
100 and len(filter_rna_tokenizer.tokenize(rna).ids) <=

1024
101 )
102 except ValueError:
103 return False # Filter out malformed lines
104

105 filtered = train_dataset.filter(_is_valid_sample)
106

107 # # # Shuffle dataset
108 if iterable:
109 shuffled = filtered.shuffle(buffer_size =10000)
110 else:
111 shuffled = filtered.shuffle ()
112

113 # Tokenize dataset
114 tokenized = shuffled.map(
115 lambda sample: tokenize_dataset(sample , source_tokenizer ,

rna_tokenizer)
116 )
117 # Add filtering step if tokenize_dataset returns None for errors
118 tokenized = tokenized.filter(lambda x: x is not None)
119

120

121 return tokenized
122

123

124 def count_file_lines(file_path):
125 try:
126 with open(file_path , "r", encoding="utf -8", errors="ignore")

as file:
127 return sum(1 for _ in file)
128 except FileNotFoundError:
129 return 0 # Return 0 if file not found , avoids crash
130

131

132 # Import The encoder -decoder model
133 device = "cuda" if torch.cuda.is_available () else "cpu"
134 model = T5ForConditionalGeneration.from_pretrained(MODEL_PATH) #

Update the model path
135 model.to(device)
136 model.eval() # Set model to evaluation mode
137

138 # Import the tokenizers
139 source_tokenizer = get_tokenizer(
140 tokenizer_name="bpe",
141 vocab_size =1000,
142 seq_size =1024,
143 tokenizer_path=SOURCE_TOKENIZER ,
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144 )
145 rna_tokenizer = get_tokenizer(
146 tokenizer_name="bpe", vocab_size =1000, seq_size =1024,

tokenizer_path=RNA_TOKENIZER
147 )
148

149

150 # Import the dataset , tokenize the data
151 class Args:
152 def __init__(self , train_data , eval_data):
153 self.train_data = train_data
154 self.eval_data = eval_data
155

156

157 dataset_args = Args(TRAIN_DATA , EVAL_DATA)
158 train_dataset = get_datasets(
159 dataset_args , source_tokenizer=source_tokenizer ,

rna_tokenizer=rna_tokenizer
160 )
161

162 """
163 return {
164 "input_ids": source_tokenized.ids ,
165 "attention_mask": source_tokenized.attention_mask ,
166 "labels": rna_labels ,
167 }
168 """
169

170 print(model.config) # Original print statement
171

172 save_dir = Path(PAIR_SAVE_DIR)
173 # --- Ensure save directory exists ---
174 save_dir.mkdir(parents=True , exist_ok=True)
175 train_output_path = save_dir / TRAIN_OUTPUT_FILENAME
176 test_output_path = save_dir / TEST_OUTPUT_FILENAME
177

178 # Generate train/test indices before processing
179 total_samples = count_file_lines(TRAIN_DATA)
180 indices = np.arange(total_samples)
181 np.random.seed (42) # Set seed for reproducibility
182 np.random.shuffle(indices)
183 train_size = int(TRAIN_TEST_SPLIT * total_samples)
184 train_indices = set(indices [: train_size ])
185

186 # pair_list = [] # Removed: No longer accumulating in memory
187 print(type(train_dataset)) # Original print statement
188 batched_dataset = train_dataset.iter(batch_size=BATCH_SIZE)
189

190 file_length = count_file_lines(TRAIN_DATA)
191 # Use file_length for tqdm if reliable , otherwise might need

adjustment or removal
192 tqdm_total = (file_length // BATCH_SIZE + 1) if file_length > 0 else

None
193

194 current_index = 0 # Keep track of global index
195

196 # --- Open output file before the loop ---
197 with open(train_output_path , "wb") as train_outfile:
198 with open(test_output_path , "wb") as test_outfile:
199 # Freeze the model gradients and disable dropout etc.
200 with torch.inference_mode ():
201 for tokenized_batch in tqdm(batched_dataset ,

total=tqdm_total): # Use calculated total if available
202

203 protein_ids = [
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204 tokenized.ids for tokenized in
tokenized_batch["source_tokenized"]

205 ]
206 protein_attention = [
207 tokenized.attention_mask
208 for tokenized in

tokenized_batch["source_tokenized"]
209 ]
210

211 rna_ids = [tokenized.ids for tokenized in
tokenized_batch["rna_tokenized"]]

212 rna_attention = [
213 tokenized.attention_mask for tokenized in

tokenized_batch["rna_tokenized"]
214 ]
215

216 # --- Convert lists to tensors ---
217 protein_ids_tensor = torch.tensor(protein_ids ,

dtype=torch.long).to(device)
218 protein_attention_tensor =

torch.tensor(protein_attention ,
dtype=torch.long).to(device)

219 rna_ids_tensor = torch.tensor(rna_ids ,
dtype=torch.long).to(device)

220 rna_attention_tensor = torch.tensor(rna_attention ,
dtype=torch.long).to(device)

221

222 # Extract protein & rna embeddings
223

224 # Forward pass through the encoder
225 encoder_outputs = model.encoder(
226 input_ids=protein_ids_tensor ,
227 attention_mask=protein_attention_tensor ,
228 )
229 protein_hidden_states =

encoder_outputs.last_hidden_state # Encoder
embeddings

230

231 # Forward pass through the decoder
232 decoder_outputs = model.decoder(
233 input_ids=rna_ids_tensor ,
234 attention_mask=rna_attention_tensor ,
235 encoder_hidden_states=protein_hidden_states ,
236 encoder_attention_mask=protein_attention_tensor ,

# Pass encoder mask
237 output_hidden_states=True ,
238 )
239 rna_hidden_states = decoder_outputs.last_hidden_state
240

241 # Protein embedding (Mean Pooling)
242 # Use attention mask directly for masking and length

calculation
243 protein_masks = protein_attention_tensor.to(device) #

Already on device
244 protein_hidden_masked = protein_hidden_states *

protein_masks.unsqueeze (-1)
245 protein_masked_sum = torch.sum(protein_hidden_masked ,

dim =1)
246 protein_sequence_lengths = torch.sum(protein_masks ,

dim=1, keepdim=True).clamp(min=1) # Avoid div by
zero

247 protein_embeddings = protein_masked_sum /
protein_sequence_lengths

248

249

21



250 # RNA embedding (Last non -padding token / EOS -like)
251 # Find the index of the last non -padding token using

the attention mask
252 rna_sequence_lengths_indices =

rna_attention_tensor.sum(dim=1) - 1 # Get last
index (0-based)

253 rna_sequence_lengths_indices =
rna_sequence_lengths_indices.clamp(min =0) #
Ensure index is not negative

254

255 # Gather the hidden state at the last token index for
each sequence in the batch

256 rna_embeddings = rna_hidden_states[
257 torch.arange(rna_hidden_states.size (0),

device=device), rna_sequence_lengths_indices
258 ]
259

260 # Average embedding
261 #rna_masks = torch.stack(
262 # [
263 # (torch.tensor(tokenized.ids) != 0)
264 # for tokenized in

tokenized_batch [" rna_tokenized "]
265 # ]
266 #).to(device)
267 #rna_hidden_masked = rna_hidden_states *

rna_masks.unsqueeze(dim=2)
268 #print(protein_hidden_masked [0])
269 #rna_masked_sum = torch.sum(rna_hidden_masked ,

dim =1).to(device)
270 #rna_sequence_lengths = torch.sum(rna_masks ,

dim =1).to(device)
271 #rna_embeddings = rna_masked_sum /

rna_sequence_lengths.unsqueeze(dim=1)
272

273

274 # --- Create list of pairs *for this batch* and write
incrementally ---

275 current_batch_labels = tokenized_batch["label"]
276 # Move tensors to CPU before pickling
277 protein_embeddings_cpu = protein_embeddings.cpu()
278 rna_embeddings_cpu = rna_embeddings.cpu()
279

280 # Process each sample in the batch
281 for i in range(len(current_batch_labels)):
282 pair_data = {
283 "protein": protein_embeddings_cpu[i],
284 "rna": rna_embeddings_cpu[i],
285 "label": current_batch_labels[i],
286 }
287 # Write to appropriate file based on pre -computed

split
288 if current_index in train_indices:
289 pickle.dump(pair_data , train_outfile)
290 else:
291 pickle.dump(pair_data , test_outfile)
292 current_index += 1

File: classifier/classifier.py

Listing 3: Code Snippet
1 """
2 Binding classifiers for protein and RNA embeddings
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3 Last modified: 24.02.2025
4 Modified by: Alpsencer & Yusuf
5 """
6

7 import torch
8 import torch.nn as nn
9 import torch.nn.init as init

10

11

12 # Define the MLP Classifier
13 # TODO: hyperparameters from yaml
14 # TODO: regressor or classifier
15 class MLPBindingClassifier(nn.Module):
16 def __init__(self , protein_dim , rna_dim , hidden_dims =[512, 256,

128], dropout_rate =0.2):
17 super(MLPBindingClassifier , self).__init__ ()
18

19 # self.protein_mean = protein_mean
20 # self.protein_std = protein_std
21

22 # self.rna_mean = rna_mean
23 # self.rna_std = rna_std
24

25 # Input dimension is the concatenated protein and RNA
embeddings

26 input_dim = protein_dim + rna_dim
27

28 # Build the MLP layers
29 layers = []
30 # layers.append(nn.BatchNorm1d(num_features=input_dim))
31 prev_dim = input_dim
32

33 for hidden_dim in hidden_dims:
34 layers.append(nn.Linear(prev_dim , hidden_dim))
35 layers.append(nn.ReLU())
36 layers.append(nn.Dropout(p=dropout_rate))
37 prev_dim = hidden_dim
38

39 # Output layer (binary classification)
40 layers.append(nn.Linear(prev_dim , 1))
41 layers.append(nn.Sigmoid ())
42

43 self.model = nn.Sequential (* layers)
44

45 def forward(self , protein_embedding , rna_embedding):
46 # Concatenate the embeddings
47

48 # protein_normalized = ( protein_embedding -
self.protein_mean ) / self.protein_std

49

50 # rna_normalized = ( rna_embedding - self.rna_mean) /
self.rna_std

51

52 combined = torch.cat(( protein_embedding , rna_embedding),
dim =1)

53

54 return self.model(combined)
55

56

57 class ContrastiveBindingClassifier(nn.Module):
58 pass
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*

File: classifier/embedding_loader.py

Listing 4: Code Snippet
1 import torch
2 from torch.utils.data import Dataset , DataLoader
3 import torch.nn.functional as F
4 import pickle
5

6

7 class ProteinRNAEmbeddingDataset(Dataset):
8 def __init__(self , dataset_path):
9

10 # self.data = torch.load(dataset_path)
11

12 # Load the dataset with pickle
13 self.data = []
14 with open(dataset_path , "rb") as f:
15 while True:
16 try:
17 self.data.append(pickle.load(f))
18 except EOFError:
19 break
20

21 proteins = torch.stack([x["protein"] for x in self.data])
22 rnas = torch.stack([x["rna"] for x in self.data])
23 labels = torch.tensor ([x["label"] for x in self.data])
24

25 self.proteins_normalized = F.normalize(proteins , p=2, dim=-1)
26 self.rnas_normalized = F.normalize(rnas , p=2, dim=-1)
27 self.labels = labels
28

29 def __len__(self):
30 return len(self.data)
31

32 def __getitem__(self , idx):
33 item = self.data[idx]
34 # protein = torch.tensor(item[" protein"], dtype=torch.float32)
35 # rna = torch.tensor(item["rna"], dtype=torch.float32)
36 protein =

item["protein"]. clone().detach ().requires_grad_(True).float()
37 rna =

item["rna"].clone().detach ().requires_grad_(True).float()
38 label = torch.tensor(item["label"], dtype=torch.long)
39

40 return protein , rna , label

*

File: classifier/train_classifier.py

Listing 5: Code Snippet
1 """
2 Train a classifier for binding score of protein and rna embeddings
3 Last modified: 13.04.2025
4 Modified by: Alpsencer & Yusuf
5 """
6

7 import torch
8 from torch.utils.data import Dataset , DataLoader
9 from torch.optim import Adam

10 from torch.nn import BCELoss
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11 from torch.optim.lr_scheduler import LinearLR
12 from tqdm import tqdm
13 import wandb
14

15 from classifier import MLPBindingClassifier
16 from embedding_loader import ProteinRNAEmbeddingDataset
17

18 # Constants
19 TRAIN_DATA =

"/data6/alpsencer/data/rllm_classifier_pairs/pairs_100K_eos_train.pkl"
20 VALIDATION_DATA =

"/data6/alpsencer/data/rllm_classifier_pairs/pairs_100K_eos_test.pkl"
21 BATCH_SIZE = 64
22 LEARNING_RATE = 0.00001
23 WEIGHT_DECAY = 0.01 # L2 regularization parameter
24 DROPOUT_RATE = 0.0 # Dropout rate for regularization
25 NUM_EPOCHS = 1000
26 VALIDATION_EPOCHS = 5
27 WARMUP_EPOCHS = 10 # Number of epochs for warmup
28 WARMUP_START_FACTOR = 0.1 # Starting learning rate factor
29

30 # Initialize wandb
31 wandb.init(
32 project="rllm -binding -classifier",
33 config ={
34 "learning_rate": LEARNING_RATE ,
35 "weight_decay": WEIGHT_DECAY ,
36 "dropout_rate": DROPOUT_RATE ,
37 "batch_size": BATCH_SIZE ,
38 "epochs": NUM_EPOCHS ,
39 "validation_epochs": VALIDATION_EPOCHS ,
40 "warmup_epochs": WARMUP_EPOCHS ,
41 "warmup_start_factor": WARMUP_START_FACTOR ,
42 }
43 )
44

45 # Load dataset and create DataLoader
46 train_dataset = ProteinRNAEmbeddingDataset(TRAIN_DATA)
47 validation_dataset = ProteinRNAEmbeddingDataset(VALIDATION_DATA)
48

49 train_dataloader = DataLoader(train_dataset , batch_size=BATCH_SIZE ,
shuffle=True , drop_last=True)

50 validation_dataloader = DataLoader(validation_dataset ,
batch_size=BATCH_SIZE , shuffle=True , drop_last=True)

51

52 # Find embedding sizes
53 proteins , rnas , labels = next(iter(train_dataloader))
54 protein_dim = proteins.shape [1]
55 rna_dim = rnas.shape [1]
56

57 # Initialize the model , optimizer , and loss function
58 device = "cuda" if torch.cuda.is_available () else "cpu"
59

60 model = MLPBindingClassifier(
61 protein_dim=protein_dim , rna_dim=rna_dim , hidden_dims =[256, 64],

dropout_rate=DROPOUT_RATE
62 )
63

64 model.to(device)
65

66 optimizer = Adam(model.parameters (), lr=LEARNING_RATE ,
weight_decay=WEIGHT_DECAY)

67 criterion = BCELoss () # Binary Cross -Entropy Loss for binary
classification

68
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69 # Create learning rate scheduler with linear warmup
70 total_steps = len(train_dataloader) * NUM_EPOCHS
71 warmup_steps = len(train_dataloader) * WARMUP_EPOCHS
72 scheduler = LinearLR(
73 optimizer ,
74 start_factor=WARMUP_START_FACTOR ,
75 end_factor =1.0,
76 total_iters=warmup_steps
77 )
78

79 # normalized_embedding = (embedding - stats ["mean "]) / stats ["std"]
80

81 # Training loop
82 for epoch in range(NUM_EPOCHS):
83 print(f"Epoch: {epoch +1}")
84

85 model.train () # Set the model to training mode
86 running_loss = 0.0
87

88 for batch in tqdm(train_dataloader):
89 proteins , rnas , labels = batch
90

91 labels.unsqueeze_ (1) # unsqueeze to make labels 2D tensor
92 proteins , rnas , labels = proteins.to(device),

rnas.to(device), labels.to(device)
93

94 # Forward pass
95 outputs = model(proteins , rnas)
96 loss = criterion(outputs , labels.float ())
97

98 # Zero the gradients
99 optimizer.zero_grad ()

100

101 # Backward pass and optimization
102 loss.backward ()
103 optimizer.step()
104

105 # Step the scheduler
106 if epoch < WARMUP_EPOCHS:
107 scheduler.step()
108

109 running_loss += loss.item()
110

111 # Log training loss and learning rate per epoch
112 epoch_loss = running_loss / len(train_dataloader)
113 current_lr = optimizer.param_groups [0][’lr’]
114 wandb.log({
115 "train_loss": epoch_loss ,
116 "learning_rate": current_lr ,
117 "epoch": epoch + 1
118 })
119 print(f"Epoch [{epoch +1}/{ NUM_EPOCHS }], Loss: {epoch_loss :.4f},

LR: {current_lr :.6f}")
120

121 if (epoch + 1) % VALIDATION_EPOCHS == 0:
122 model.eval()
123 validation_loss = 0.0
124 total_predictions = 0
125 true_positives = 0
126 predicted_positives = 0
127 total_positives = 0
128

129 with torch.inference_mode ():
130 for batch in tqdm(validation_dataloader):
131 proteins , rnas , labels = batch
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132 labels.unsqueeze_ (1)
133 proteins , rnas , labels = proteins.to(device),

rnas.to(device), labels.to(device)
134

135 outputs = model(proteins , rnas)
136 loss = criterion(outputs , labels.float ())
137 validation_loss += loss.item()
138

139 # Convert outputs to binary predictions
140 predictions = (outputs > 0.5).float ()
141

142 # Update metrics
143 total_predictions += len(predictions)
144 true_positives += (( predictions == 1) & (labels ==

1)).sum().item()
145 predicted_positives += (predictions == 1).sum().item()
146 total_positives += (labels == 1).sum().item()
147

148 # Calculate final metrics
149 accuracy = true_positives / total_predictions if

total_predictions > 0 else 0
150 precision = true_positives / (predicted_positives + 1e-8)

if predicted_positives > 0 else 0
151 recall = true_positives / (total_positives + 1e-8) if

total_positives > 0 else 0
152 f1_score = 2 * (precision * recall) / (precision + recall

+ 1e-8) if (precision + recall) > 0 else 0
153

154 # Log validation metrics
155 val_loss = validation_loss / len(validation_dataloader)

if len(validation_dataloader) > 0 else 0
156 wandb.log({
157 "val_loss": val_loss ,
158 "val_accuracy": accuracy ,
159 "val_precision": precision ,
160 "val_recall": recall ,
161 "val_f1": f1_score ,
162 "epoch": epoch + 1
163 })
164

165 print(f"Validation Loss: {val_loss :.4f}")
166 print(f"Accuracy: {accuracy :.4f}, Precision:

{precision :.4f}, Recall: {recall :.4f}, F1 Score:
{f1_score :.4f}")

167

168 print("Training complete!")
169 wandb.finish ()

*

Directory: classifier/util/

*

File: classifier/util/generate_background_seq.py

Listing 6: Code Snippet
1 import csv
2 import random
3 from tqdm import tqdm
4

5 #
------------------------------------------------------------------------------
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6 # 1) Define file paths
7 #

------------------------------------------------------------------------------
8 INPUT_CSV = "/data6/alpsencer/reinforce_rna/output.csv"
9 OUTPUT_CSV = "/data6/alpsencer/reinforce_rna/background_sequences.csv"

10

11 #
------------------------------------------------------------------------------

12 # 2) Function to generate a background sequence by shuffling the RNA
sequence

13 #
------------------------------------------------------------------------------

14 def generate_background(rna_seq):
15 rna_list = list(rna_seq)
16 random.shuffle(rna_list)
17 return "".join(rna_list)
18

19 #
------------------------------------------------------------------------------

20 # 3) Iteratively process the CSV file row by row
21 #

------------------------------------------------------------------------------
22 with open(INPUT_CSV , "r", newline="") as infile , open(OUTPUT_CSV ,

"w", newline="") as outfile:
23 reader = csv.DictReader(infile)
24 writer = csv.DictWriter(outfile , fieldnames=reader.fieldnames)
25 writer.writeheader ()
26

27 # Process each row iteratively with a progress bar
28 for row in tqdm(reader , desc="Processing rows"):
29 original_rna = row["rna_sequence"]
30 bg_rna = generate_background(original_rna)
31 row["rna_sequence"] = bg_rna
32 row["pair"] = "-" # mark as background sequence
33 writer.writerow(row)
34

35 print("Background sequences saved to:", OUTPUT_CSV)

*

File: classifier/util/generate_protein_input.py

Listing 7: Code Snippet
1 # This will converr the protein_seqs csv file in the form that grpo

trainer can get properly (different protein inputs)
2 # and save it as protein_input.txt
3 import pandas as pd
4

5 # 1) Read your source CSV
6 df = pd.read_csv("protein_seqs.csv")
7

8 # 2) Build each line as "sequence$prot_name"
9 lines = df.apply(lambda row: f"{row[’seq ’]}${row[’prot_name ’]}",

axis =1)
10

11 # 3) Write to a .txt file
12 with open("protein_input.txt", "w") as f:
13 for line in lines:
14 f.write(line + "\n")
15

16 print("Wrote", len(lines), "entries to protein_input.txt")
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*

File: classifier/util/sample_generate.py

Listing 8: Code Snippet
1 import csv
2 import random
3 from tqdm import tqdm
4

5 #
------------------------------------------------------------------------------

6 # 1) Define file paths and sample sizes
7 #

------------------------------------------------------------------------------
8 POSITIVE_CSV =

"/data6/alpsencer/reinforce_rna/positive_sequences.csv"
9 BACKGROUND_CSV =

"/data6/alpsencer/reinforce_rna/background_sequences.csv"
10 MERGED_TXT = "/data6/alpsencer/reinforce_rna/sample_100K.txt"
11 NUM_SAMPLES_PER_FILE = 100000 # 50K rows per file
12

13 #
------------------------------------------------------------------------------

14 # 2) Generator function to stream rows with strand ’+’ from a file
15 #

------------------------------------------------------------------------------
16 def positive_rows_generator(file_path , limit):
17 """
18 Yields rows from file_path where the strand is ’+’ until the

limit is reached.
19 """
20 count = 0
21 with open(file_path , "r", newline="") as infile:
22 reader = csv.DictReader(infile , delimiter=",")
23 for row in reader:
24 if row["strand"] == "+":
25 yield row
26 count += 1
27 if count >= limit:
28 break
29

30 #
------------------------------------------------------------------------------

31 # 3) Collect rows from both CSV files without reading them entirely
into memory

32 #
------------------------------------------------------------------------------

33 merged_rows = []
34

35 # Process the positive CSV
36 for row in tqdm(positive_rows_generator(POSITIVE_CSV ,

NUM_SAMPLES_PER_FILE),
37 desc="Processing positive CSV"):
38 merged_rows.append ({
39 "protein_seq": row["protein_seq"],
40 "rna_seq": row["rna_sequence"],
41 "pair": row["pair"]
42 })
43

44 # Process the background CSV
45 for row in tqdm(positive_rows_generator(BACKGROUND_CSV ,

NUM_SAMPLES_PER_FILE),
46 desc="Processing background CSV"):
47 merged_rows.append ({
48 "protein_seq": row["protein_seq"],
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49 "rna_seq": row["rna_sequence"],
50 "pair": row["pair"]
51 })
52

53 #
------------------------------------------------------------------------------

54 # 4) Shuffle the merged rows randomly
55 #

------------------------------------------------------------------------------
56 random.shuffle(merged_rows)
57

58 #
------------------------------------------------------------------------------

59 # 5) Write the shuffled rows to a TXT file using ’$’ as the delimiter
60 #

------------------------------------------------------------------------------
61 with open(MERGED_TXT , "w", newline="") as outfile:
62 fieldnames = ["protein_seq", "rna_seq", "pair"]
63 writer = csv.DictWriter(outfile , fieldnames=fieldnames ,

delimiter="$")
64 writer.writeheader ()
65 for row in merged_rows:
66 writer.writerow(row)
67

68 print(f"Merged and shuffled sample TXT created with
{NUM_SAMPLES_PER_FILE * 2} rows using ’$’ as delimiter:",
MERGED_TXT)

*

File: classifier/util/tokenizer.py

Listing 9: Code Snippet
1 import json
2 import os
3 import numpy as np
4

5

6 from tokenizers import Tokenizer
7 from tokenizers.models import BPE
8 from tokenizers.trainers import BpeTrainer
9 from tokenizers.pre_tokenizers import ByteLevel

10 from tokenizers.processors import TemplateProcessing
11 from tokenizers.normalizers import Sequence , Lowercase
12

13 import torch
14

15

16 class BpeTokenizer:
17 def __init__(self , seq_size , vocab_size):
18 self.tokenizer = Tokenizer(BPE())
19 self.tokenizer.normalizer = Sequence ([ Lowercase ()])
20 self.tokenizer.pre_tokenizer =

ByteLevel(add_prefix_space=False)
21

22 self.tokenizer.enable_padding(max_length=seq_size ,
direction=’right ’)

23 self.tokenizer.enable_truncation(max_length=seq_size)
24

25 self.special_tokens = {
26 "pad": {"id": 0, "token": "<pad >"},
27 "eos": {"id": 1, "token": " </s>"},
28 "unk": {"id": 2, "token": "<unk >"},
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29 }
30

31

32 self.special_tokens_list = [None] * len(self.special_tokens)
33 for token_dict in self.special_tokens.values ():
34 self.special_tokens_list[token_dict["id"]] =

token_dict["token"]
35

36 self.tokenizer.post_processor = TemplateProcessing(
37 single=f"$A {self.special_tokens[’eos ’][’token ’]}",
38 special_tokens =[
39 (self.special_tokens["eos"]["token"],

self.special_tokens["eos"]["id"]),
40 ],
41 )
42

43 self.trainer = BpeTrainer(
44 vocab_size=vocab_size ,
45 special_tokens=self.special_tokens_list ,
46 show_progress=True
47 )
48

49 def train_tokenizer(self , train_data , which=True):
50 def iterator(data , which):
51 for sequence_item in data: # Renamed sequence to

sequence_item
52 text = sequence_item[’text’] # Renamed sequence to

sequence_item
53 mol , rna = text.strip ().split(’$’)
54 if which:
55 yield mol
56 else:
57 yield rna
58 self.tokenizer.train_from_iterator(iterator(data=train_data ,

which=which), trainer=self.trainer)
59 self.add_unk_id ()
60

61 def train_from_files(self , data_files: str):
62 self.tokenizer.train(files =[ data_files], trainer=self.trainer)
63 self.add_unk_id ()
64

65 def add_unk_id(self):
66 tokenizer_json = json.loads(self.tokenizer.to_str ())
67 tokenizer_json["model"]["unk_id"] =

self.special_tokens["unk"]["id"]
68 self.tokenizer =

Tokenizer.from_str(json.dumps(tokenizer_json))
69

70 def save(self , path: str , name: str):
71 if not os.path.exists(path):
72 os.makedirs(path)
73 self.tokenizer.save(os.path.join(path , f"{name}.json"))
74

75 def load(self , path: str):
76 self.tokenizer = Tokenizer.from_file(path)
77

78 def tokenize(self , sequence_to_tokenize): # Renamed sequence to
sequence_to_tokenize

79 # print(sequence_to_tokenize)
80 return self.tokenizer.encode(sequence_to_tokenize)
81

82 def decode(self , sequence_to_decode): # Renamed sequence to
sequence_to_decode

83 # print(sequence_to_decode)
84 if isinstance(sequence_to_decode , torch.Tensor):
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85 sequence_to_decode =
sequence_to_decode.detach ().cpu().numpy ().astype(dtype=np.int64)

86 # decode method of huggingface tokenizers usually decodes a
single sequence of ids ,

87 # or a batch if batch_decode is used. The original code here
implies it might get a list of lists.

88 # However , self.tokenizer.decode expects a list of ints
(single sequence) or a string.

89 # If sequence_to_decode is already a list of token IDs (e.g.,
from model.generate), this is correct.

90 # If it’s a list of sequences (list of list of IDs), it would
need a loop or batch_decode.

91 # The custom_tokenizer.py in grpo -trainer has a different
decode for list of sequences.

92 # Assuming this one is for a single sequence.
93 return self.tokenizer.decode(sequence_to_decode)
94

95 def encode(self , tokenized_list): # Renamed tokenized to
tokenized_list

96 return [self.tokenizer.encode(seq) for seq in tokenized_list]
97

98

99 def get_tokenizer(tokenizer_name:str , vocab_size:int , seq_size:int ,
tokenizer_path:str=None):

100 # Choose tokenizer
101 if tokenizer_name =="bpe":
102 my_tokenizer = BpeTokenizer(vocab_size=vocab_size ,

seq_size=seq_size)
103 else:
104 raise NotImplementedError
105

106 # Load pre -trained tokenizer or train tokenizer
107 if tokenizer_path:
108 my_tokenizer.load(tokenizer_path)
109

110 if vocab_size != my_tokenizer.tokenizer.get_vocab_size ():
111 assert "There is a conflict Tokenizer ’s vocab size and

arguments ’"
112

113 return my_tokenizer

Directory: grpo-trainer/

File: grpo-trainer/config.py

Listing 10: Code Snippet
1 MODEL_PATH =

"/data6/sobhan/rllm/results/train/t5/run3_20240822 -152114/ checkpoints/checkpoint -349800"
2 PROTEIN_TOKENIZER =

"/data6/alpsencer/tokenizers/bpe_protein_1000_1024.json"
3 RNA_TOKENIZER = "/data6/alpsencer/tokenizers/bpe_rna_1000_1024.json"
4

5 TRAIN_DATA = "/data6/alpsencer/reinforce_rna/protein_input.txt"
6 EVAL_DATA = "/data6/alpsencer/reinforce_rna/validation_rl.txt"
7

8 MAX_LENGTH = 1024
9 VOCAB_SIZE = 1000

10 BATCH_SIZE = 16
11 LEARNING_RATE = 1e-5
12 NUM_TRAIN_EPOCHS = 3
13 GRADIENT_ACCUMULATION_STEPS = 4
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14 # FREEZE_ENCODER = True # Whether to freeze the encoder during
training

15

16 GC_CONTENT_MIN = 0.4 # Minimum acceptable GC content
17 GC_CONTENT_MAX = 0.6 # Maximum acceptable GC content
18 BINDING_AFFINITY_WEIGHT = 0.2 # Weight for binding affinity reward
19 GC_CONTENT_WEIGHT = 0.4 # Weight for GC content reward
20 MFE_WEIGHT = 0.4 # Weight for MFE reward
21

22 NUM_GENERATIONS = 8 # Number of generations per prompt
23 MAX_PROMPT_LENGTH = 1024 # Maximum length of the prompt
24 MAX_COMPLETION_LENGTH = 256 # Maximum length of the generated

completion
25

26 BETA = 0.04 # KL coefficient
27 EPSILON = 0.1 # Epsilon value for clipping
28 MU = 5
29

30 WANDB_PROJECT = "rna -protein -grpo"

File: grpo-trainer/custom_tokenizer.py

Listing 11: Code Snippet
1 import json
2 import os
3 import numpy as np
4

5

6 from tokenizers import Tokenizer
7 from tokenizers.models import BPE
8 from tokenizers.trainers import BpeTrainer
9 from tokenizers.pre_tokenizers import ByteLevel

10 from tokenizers.processors import TemplateProcessing
11 from tokenizers.normalizers import Sequence , Lowercase
12

13 import torch
14

15

16 class BpeTokenizer:
17 def __init__(self , seq_size , vocab_size):
18 self.tokenizer = Tokenizer(BPE())
19 self.tokenizer.normalizer = Sequence ([ Lowercase ()])
20 self.tokenizer.pre_tokenizer =

ByteLevel(add_prefix_space=False)
21

22 self.tokenizer.enable_padding(max_length=seq_size ,
direction=’right ’)

23 self.tokenizer.enable_truncation(max_length=seq_size)
24

25 self.special_tokens = {
26 "pad": {"id": 0, "token": "<pad >"},
27 "eos": {"id": 1, "token": " </s>"},
28 "unk": {"id": 2, "token": "<unk >"},
29 }
30

31

32 self.special_tokens_list = [None] * len(self.special_tokens)
33 for token_dict in self.special_tokens.values ():
34 self.special_tokens_list[token_dict["id"]] =

token_dict["token"]
35

36 self.tokenizer.post_processor = TemplateProcessing(
37 single=f"$A {self.special_tokens[’eos ’][’token ’]}",
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38 special_tokens =[
39 (self.special_tokens["eos"]["token"],

self.special_tokens["eos"]["id"]),
40 ],
41 )
42

43 self.trainer = BpeTrainer(
44 vocab_size=vocab_size ,
45 special_tokens=self.special_tokens_list ,
46 show_progress=True
47 )
48

49 def train_tokenizer(self , train_data , which=True):
50 def iterator(data , which_mol): # Renamed which to which_mol
51 for sequence_item in data: # Renamed sequence to

sequence_item
52 text = sequence_item[’text’] # Renamed sequence to

sequence_item
53 mol , rna = text.strip ().split(’$’)
54 if which_mol: # Use which_mol
55 yield mol
56 else:
57 yield rna
58 self.tokenizer.train_from_iterator(iterator(data=train_data ,

which_mol=which), trainer=self.trainer) # Pass which as
which_mol

59 self.add_unk_id ()
60

61 def train_from_files(self , data_files: str):
62 self.tokenizer.train(files =[ data_files], trainer=self.trainer)
63 self.add_unk_id ()
64

65 def add_unk_id(self):
66 tokenizer_json = json.loads(self.tokenizer.to_str ())
67 tokenizer_json["model"]["unk_id"] =

self.special_tokens["unk"]["id"]
68 self.tokenizer =

Tokenizer.from_str(json.dumps(tokenizer_json))
69

70 def save(self , path: str , name: str):
71 if not os.path.exists(path):
72 os.makedirs(path)
73 self.tokenizer.save(os.path.join(path , f"{name}.json"))
74

75 def load(self , path: str):
76 self.tokenizer = Tokenizer.from_file(path)
77

78 def tokenize(self , sequence_to_tokenize): # Renamed sequence to
sequence_to_tokenize

79 # print(sequence_to_tokenize)
80 return self.tokenizer.encode(sequence_to_tokenize)
81

82 def decode(self , sequences_to_decode): # Renamed sequences to
sequences_to_decode

83 # print(sequences_to_decode)
84 if isinstance(sequences_to_decode , torch.Tensor):
85 sequences_to_decode =

sequences_to_decode.detach ().cpu().numpy().astype(dtype=np.int64)
86 # This decode is meant to handle a batch of sequences (list

of list of IDs or tensor)
87 # and return a list of decoded strings.
88 return [self.tokenizer.decode(seq) for seq in

sequences_to_decode]
89
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90 def encode(self , tokenized_list): # Renamed tokenized to
tokenized_list

91 return [self.tokenizer.encode(seq) for seq in tokenized_list]
92

93

94 def get_tokenizer(tokenizer_name:str , vocab_size:int , seq_size:int ,
tokenizer_path:str=None):

95 # Choose tokenizer
96 if tokenizer_name =="bpe":
97 my_tokenizer = BpeTokenizer(vocab_size=vocab_size ,

seq_size=seq_size)
98 else:
99 raise NotImplementedError

100

101 # Load pre -trained tokenizer or train tokenizer
102 if tokenizer_path:
103 my_tokenizer.load(tokenizer_path)
104

105 if vocab_size != my_tokenizer.tokenizer.get_vocab_size ():
106 assert "There is a conflict Tokenizer ’s vocab size and

arguments ’"
107

108 return my_tokenizer

File: grpo-trainer/hyperparameter_tuning.py

Listing 12: Code Snippet
1 import optuna
2 import wandb
3 import sys
4 import copy
5 import torch
6 from pathlib import Path
7

8 # Add the project root to Python path to import from sibling
directories

9 project_root = Path(__file__).resolve ().parent # Use resolve () for
robustness

10 sys.path.append(str(project_root))
11

12 # from config import (
13 # LEARNING_RATE , BETA , EPSILON , MU,
14 # BINDING_AFFINITY_WEIGHT , GC_CONTENT_WEIGHT , MFE_WEIGHT ,
15 # NUM_GENERATIONS , TOP_P , TEMPERATURE
16 # )
17 from main import ProteinRNAGRPOTainer # Assuming main.py is in the

same dir (project_root)
18

19 # def run_hyperparameter_tuning(model , tok_p , tok_r , train_envs ,
eval_envs , config_obj , n_trials =20): # Renamed config to
config_obj

20 def run_hyperparameter_tuning(model , tok_p , tok_r , train_envs ,
eval_envs , tuning_config , n_trials =20): # Renamed config_obj to
tuning_config

21 # Save the initial state of the model to reset before each trial
22 base_model_state = copy.deepcopy(model.state_dict ())
23

24 def objective(trial):
25 try:
26 # Reset the model to the base state before each trial
27 model.load_state_dict(base_model_state)
28
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29 # Reset optimizer state by creating a new optimizer
instance

30 # The optimizer is created within ProteinRNAGRPOTainer ,
so this might not be strictly necessary here

31 # if the trainer re -initializes its optimizer or if model
reset is enough.

32 # However , explicit re -creation ensures no stale
optimizer state.

33 # optimizer = torch.optim.AdamW(model.parameters (),
lr=tuning_config.learning_rate) # Use tuning_config

34

35 # Define hyperparameter search space for only mu , beta ,
and epsilon

36 beta_val = trial.suggest_float(’beta’, 0.01, 0.1) #
Renamed beta to beta_val

37 epsilon_val = trial.suggest_float(’epsilon ’, 0.05, 0.2) #
Renamed epsilon to epsilon_val

38 mu_val = trial.suggest_int(’mu’, 3, 8) # Renamed mu to
mu_val

39

40 # Initialize wandb run with the trial parameters
41 current_run = wandb.init( # Renamed run to current_run
42 project="rna -protein -grpo", # Or use

tuning_config.WANDB_PROJECT if defined
43 name=f"trial_{trial.number}",
44 config ={
45 ’beta’: beta_val ,
46 ’epsilon ’: epsilon_val ,
47 ’mu’: mu_val ,
48 },
49 reinit=True # Allow multiple runs in the same process
50 )
51

52 # Update config parameters FOR THIS TRIAL
53 # The ProteinRNAGRPOTainer __init__ takes a config object.
54 # We need to pass these tuned values to it.
55 # One way is to create a new config object for each trial

or modify a copy.
56

57 trial_config = copy.deepcopy(tuning_config) # Work on a
copy

58 # These attributes (BETA , EPSILON , MU) need to be
accessible by ProteinRNAGRPOTainer

59 # If ProteinRNAGRPOTainer reads them from the global
’config ’ module , then we’d set config.BETA

60 # If ProteinRNAGRPOTainer reads them from its
self.config_obj , then we set them on trial_config.

61 # Assuming ProteinRNAGRPOTainer uses its
self.config_obj.BETA etc.

62 trial_config.BETA = beta_val
63 trial_config.EPSILON = epsilon_val
64 trial_config.MU = mu_val
65

66 # Run training
67 trainer = ProteinRNAGRPOTainer(model , tok_p , tok_r ,

train_envs , eval_envs , trial_config) # Pass
trial_config

68 trainer.train(epochs =1) # Run for 1 epoch during tuning
69

70 # Get the final reward as the objective value
71 # Check if summary is available and contains the key
72 final_reward = 0
73 if current_run and current_run.summary:
74 final_reward =

current_run.summary.get(’reward/mean’, 0)
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75

76 # End wandb run properly
77 if wandb.run is not None: # Check if a run is active
78 wandb.finish ()
79

80 return final_reward
81

82 except Exception as e:
83 print(f"Trial failed with error: {str(e)}")
84 # Make sure to finish the wandb run even if there’s an

error
85 if wandb.run is not None:
86 wandb.finish ()
87 # Return a very low reward to indicate failure
88 return float(’-inf’)
89

90 study = optuna.create_study(direction=’maximize ’)
91 study.optimize(objective , n_trials=n_trials)
92

93 print("Best trial:")
94 best_trial_obj = study.best_trial # Renamed trial to

best_trial_obj
95

96 print(" Value: ", best_trial_obj.value)
97 print(" Params: ")
98 for key , value in best_trial_obj.params.items ():
99 print(f" {key}: {value}")

100

101 # Restore the model to the initial base state (not necessarily
best params state)

102 # Or , if you want to set model to best params , you’d need to
re -run with best_params.

103 model.load_state_dict(base_model_state)
104

105 return study.best_params

File: grpo-trainer/main.py

Listing 13: Code Snippet
1 import argparse
2 import os
3 import random
4 import torch
5 import numpy as np
6 from transformers import T5ForConditionalGeneration ,

PreTrainedTokenizerFast
7 # from trl import GRPOConfig # GRPOConfig from trl is for a different

GRPO setup. We use a custom one.
8 from reward_functions import rewarder
9 import config as global_config_module # Use an alias for the global

config module
10 from custom_tokenizer import get_tokenizer
11 # from torch.nn.functional import log_softmax # Not directly used ,

F.log_softmax is used
12

13 import copy # Already imported
14 import torch.nn.functional as F
15

16

17 # from config import EPSILON , MU , BETA # These will be taken from
global_config_module or trainer ’s config object

18

19
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20 import wandb
21 import multiprocessing as mp
22 from functools import partial
23

24 # wandb.init(project ="protein -rna -grpo", name="grpo -run") # Init
should be done once , ideally in main or controlled per run

25

26 # --- Define a simple config class for our GRPO Trainer ---
27 # This replaces the direct use of trl.GRPOConfig for a custom setup
28 class CustomGRPOConfig:
29 def __init__(self , ** kwargs):
30 self.output_dir = "./ results"
31 self.learning_rate = 1e-5
32 self.max_prompt_length = 1024
33 self.max_completion_length = 256
34 self.num_generations = 8 # Number of generations per prompt
35 self.top_p = 1.0
36 self.temperature = 1.0
37 self.max_grad_norm = 1.0
38

39 # GRPO specific , potentially tuned
40 self.BETA = global_config_module.BETA # Default from global

config
41 self.EPSILON = global_config_module.EPSILON # Default from

global config
42 self.MU = global_config_module.MU # Default from global config
43

44 # Update with any provided kwargs
45 for key , value in kwargs.items():
46 setattr(self , key , value)
47

48 # --- End simple config class ---
49

50

51 def generate_with_log_probs(
52 model_obj: T5ForConditionalGeneration , # Renamed model to

model_obj
53 input_ids: torch.Tensor ,
54 attention_mask: torch.Tensor ,
55 num_return_sequences: int ,
56 max_new_tokens: int ,
57 top_p: float ,
58 temperature: float ,
59 ) -> tuple[torch.Tensor , torch.Tensor ]:
60 """
61 1) Sample N sequences with model_obj.generate (still under

no -grad)
62 2) Re-run the model_obj forward pass on those sequences to obtain
63 token -wise log -probs **with gradient **.
64 Returns:
65 sequences (N, T) generated token ids (without the start

token)
66 log_probs (N, T) log -probs that require grad
67 """
68 device = input_ids.device
69

70 # ---- 1) sampling (no grad)
-------------------------------------------

71 with torch.no_grad ():
72 gen_out = model_obj.generate(
73 input_ids=input_ids ,
74 attention_mask=attention_mask ,
75 max_new_tokens=max_new_tokens ,
76 do_sample=True ,
77 top_p=top_p ,
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78 temperature=temperature ,
79 num_return_sequences=num_return_sequences ,
80 return_dict_in_generate=True ,
81 )
82 # gen_out.sequences shape: (N, 1 + T) (extra decoder -start

token)
83 full_sequences = gen_out.sequences
84

85 sequences = full_sequences [:, 1:] # drop start token
(N, T)

86 N, T = sequences.shape
87

88 # ---- 2) compute log -probs with grad
-----------------------------------

89 # repeat the encoder prompt N times (because batch == 1)
90 enc_input_ids = input_ids.repeat_interleave(N, dim =0)
91 enc_attention_mask = attention_mask.repeat_interleave(N, dim=0)
92

93 # decoder_input_ids are everything *before* each position
94 # prepend the decoder -start token id first
95 start_tok = model_obj.config.decoder_start_token_id
96 start_col = torch.full((N, 1), start_tok , dtype=torch.long ,

device=device)
97 decoder_input_ids = torch.cat([start_col , sequences[:, :-1]],

dim =1) # (N, T)
98

99 outputs = model_obj(
100 input_ids=enc_input_ids ,
101 attention_mask=enc_attention_mask ,
102 decoder_input_ids=decoder_input_ids ,
103 )
104 logits = outputs.logits # (N, T, V)
105

106 log_probs_tensor = torch.log_softmax(logits , dim=-1) # Renamed
log_probs to log_probs_tensor (N, T, V)

107

108 # pick the prob of the *actual* generated token at each step
109 tok_ids = sequences.unsqueeze (-1) # (N, T, 1)
110 log_probs_tensor = log_probs_tensor.gather(-1,

tok_ids).squeeze (-1) # (N, T) requires grad
111

112 return sequences , log_probs_tensor
113

114

115 def process_tokens_args_tuple(args_tuple): # Renamed args to
args_tuple to avoid conflict

116 """
117 Helper function to process tokens for a single sequence , takes a

tuple for pool.map
118 """
119 i, t, rna_ids , rna_str_list , protein_str_val , pad_token_id ,

eos_token_id = args_tuple # Unpack tuple , rna ->
rna_str_list , protein -> protein_str_val

120 if (rna_ids[i, t] == pad_token_id or rna_ids[i, t] ==
eos_token_id):

121 return t, 0.0
122

123 # Build the text up to this token
124 # rna_str_list[i] is a list of characters/tokens for the i-th

sequence
125 text = "".join(rna_str_list[i][:t+1])
126 reward_val = rewarder(text , protein_str_val) # Renamed reward to

reward_val
127 return t, reward_val
128
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129 def calculate_reward(
130 rna_ids: torch.Tensor ,
131 rna_decoded_str_list: list[list[str]], # rna is now list of list

of chars/tokens for each seq in batch
132 protein_ids: torch.Tensor , # protein_ids not directly used here

but good for context
133 protein_str_val: str , # protein is now a single string for the

batch
134 pad_token_id: int = 0,
135 eos_token_id: int = 1
136 ) -> torch.Tensor:
137 """
138 sequences: (N, T) token IDs for generated RNAs
139 rna_decoded_str_list: (N, list_of_chars_at_t) decoded RNA strings

(ACGU format)
140 protein_str_val: the source protein string (same for all N if

batch_size =1)
141 returns: (N, T) rewards for each prefix ending at t,
142 where rewarder(text , protein_str_val) is called.
143 """
144 device = rna_ids.device # Keep rewards on the original device if

possible , or move later
145 # rna_ids_cpu = rna_ids.to("cpu") # Move to CPU if

multiprocessing requires it (often does)
146 # protein_ids_cpu = protein_ids.to("cpu") # Not used in

process_tokens_args_tuple directly
147

148 N, T = rna_ids.size()
149 rewards_tensor = torch.zeros(N, T, device=device) # Renamed

rewards to rewards_tensor
150

151 # Create a pool of workers
152 # Using try -finally to ensure pool is closed
153 pool = None
154 try:
155 # num_workers = mp.cpu_count () # Can be too many , limit if

needed
156 num_workers = min(mp.cpu_count (), 4) # Example limit
157 pool = mp.Pool(processes=num_workers)
158

159 for i in range(N):
160 # Prepare arguments for each token position in this

sequence
161 # Pass rna_ids (on CPU if needed by pool),

rna_decoded_str_list (Python list), protein_str_val
(Python str)

162 token_args_list = [(i, t, rna_ids , rna_decoded_str_list ,
protein_str_val , pad_token_id , eos_token_id)

163 for t in range(T)]
164

165 # Process tokens in parallel
166 results = pool.map(process_tokens_args_tuple ,

token_args_list)
167

168 # Combine results for this sequence
169 for t_res , reward_val_res in results: # Renamed t, reward

to t_res , reward_val_res
170 rewards_tensor[i, t_res] = reward_val_res
171 finally:
172 if pool:
173 pool.close ()
174 pool.join()
175

176 return rewards_tensor
177
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178

179 def calculate_advantage(rewards: torch.Tensor , eps: float = 1e-8) ->
torch.Tensor:

180 """
181 Normalize advantages per time -step (column), ignoring padded

values.
182 rewards: (N, T) tensor of rewards , where padded values are 0
183 returns: (N, T) tensor of normalized advantages
184 """
185 # Create a mask for non -padded values (assuming padding is 0)
186 mask = (rewards != 0).float()
187

188 # Calculate mean only over non -padded values
189 sum_rewards = (rewards * mask).sum(dim=0, keepdim=True) # (1, T)
190 count = mask.sum(dim=0, keepdim=True).clamp(min=eps) # Avoid

division by zero if count is 0
191 mean = sum_rewards / count # (1, T)
192

193 # Center the rewards
194 centered = rewards - mean # (N, T)
195

196 # Calculate std only over non -padded values
197 squared_diff = (centered * mask) ** 2 # (N, T)
198 sum_squared_diff = squared_diff.sum(dim=0, keepdim=True) # (1, T)
199 std = torch.sqrt(sum_squared_diff / count ) # (1, T) # count

already has eps
200

201 # Normalize and apply mask to ensure padded values remain 0
202 advantages = (centered / (std + eps)) * mask # Add eps to std for

stability
203 return advantages
204

205

206 class ProteinRNAEnvironment:
207 """
208 Environment wrapper for P r o t e i n RNA , using tokenizer.tokenize ()
209 (returns .ids and .attention_mask).
210 """
211 def __init__(self , protein: str , rna: str ,
212 protein_tokenizer , rna_tokenizer ,
213 max_input_length: int , max_output_length: int):
214 self.protein_str = protein # Renamed protein to protein_str
215 self.rna_str = rna # Renamed rna to rna_str
216 self.p_tok = protein_tokenizer
217 self.r_tok = rna_tokenizer
218 self.max_in = max_input_length
219 self.max_out = max_output_length
220

221 # Store pad token id for convenience
222 self.p_tok_pad_id = self.p_tok.tokenizer.pad_token_id if

hasattr(self.p_tok , ’tokenizer ’) and
hasattr(self.p_tok.tokenizer , ’pad_token_id ’) else 0

223 self.r_tok_pad_id = self.r_tok.tokenizer.pad_token_id if
hasattr(self.r_tok , ’tokenizer ’) and
hasattr(self.r_tok.tokenizer , ’pad_token_id ’) else 0

224

225

226 def get_prompt_inputs(self):
227 # 1) Tokenize protein prompt
228 tok = self.p_tok.tokenize(self.protein_str)
229 ids = tok.ids[:self.max_in]
230 mask = tok.attention_mask [:self.max_in]
231

232 # 2) Pad out to max_in
233 pad_len = self.max_in - len(ids)
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234 if pad_len > 0:
235 ids = ids + [self.p_tok_pad_id] * pad_len # Use stored

pad_id
236 mask = mask + [0] * pad_len
237

238 # 3) Wrap in batch dim
239 input_ids = torch.tensor ([ids], dtype=torch.long)
240 attention_mask = torch.tensor ([mask], dtype=torch.long)
241 return input_ids , attention_mask
242

243 def get_labels(self):
244 # 1) Tokenize target RNA (convert to bjuz first)
245 rna_bjuz = self.rna_str.replace("A", "b").replace("C",

"j").replace("U", "u").replace("G", "z").replace(" ", "")
246 tok = self.r_tok.tokenize(rna_bjuz)
247 ids = tok.ids[:self.max_out]
248

249 # Labels for T5 are usually shifted , and padded tokens are
-100

250 # The T5 model itself handles shifting if decoder_input_ids
are not provided with labels.

251 # If we are providing labels for loss computation , they
should be the target tokens.

252 # Padded tokens in labels should be -100.
253

254 # Pad labels to max_out length
255 pad_len = self.max_out - len(ids)
256 if pad_len > 0:
257 ids = ids + [self.r_tok_pad_id] * pad_len # Pad with

actual pad token id first
258

259 labels_tensor = torch.tensor ([ids], dtype=torch.long) #
Renamed labels to labels_tensor

260 labels_tensor[labels_tensor == self.r_tok_pad_id] = -100 #
Replace padding with -100 for loss calculation

261

262 return labels_tensor
263

264

265 class ProteinRNAGRPOTainer:
266 def __init__(self , model_obj , tokenizer_p , tokenizer_r ,

train_envs_list , eval_envs_list , config_obj_trainer): #
Renamed params

267 self.model = model_obj # Renamed
268 self.tok_p = tokenizer_p
269 self.tok_r = tokenizer_r
270 self.train_envs = train_envs_list # Renamed
271 self.eval_envs = eval_envs_list # Renamed
272 self.config = config_obj_trainer # Renamed
273

274

275 # make a frozen reference policy ( _ref )
276 self.ref_model = copy.deepcopy(self.model).eval()
277 for p in self.ref_model.parameters ():
278 p.requires_grad = False
279

280 # the "old" policy _old , initially equals _ref
281 self.old_model = copy.deepcopy(self.ref_model)
282

283

284 self.optimizer = torch.optim.AdamW(self.model.parameters (),
lr=self.config.learning_rate)

285

286

287
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288 def evaluate(self , step =0):
289 """
290 Calculate validation loss and rewards on the evaluation

dataset
291 """
292 device = next(self.model.parameters ()).device
293 self.model.eval()
294 total_loss = 0
295 total_reward = 0
296 num_batches = 0
297

298 if not self.eval_envs: # Handle empty eval_envs
299 print("No evaluation environments provided. Skipping

evaluation.")
300 self.model.train()
301 return 0,0
302

303 with torch.no_grad ():
304 for env in self.eval_envs:
305 # Get inputs and labels
306 input_ids , attention_mask = env.get_prompt_inputs ()
307 labels = env.get_labels ()
308

309 # Move to device
310 input_ids = input_ids.to(device)
311 attention_mask = attention_mask.to(device)
312 labels = labels.to(device)
313

314 # Forward pass for loss
315 outputs = self.model(
316 input_ids=input_ids ,
317 attention_mask=attention_mask ,
318 labels=labels
319 )
320

321 loss = outputs.loss
322 total_loss += loss.item()
323

324 # Generate RNA sequence for reward calculation
325 gen_output = self.model.generate( # Renamed gen to

gen_output
326 input_ids=input_ids ,
327 attention_mask=attention_mask ,
328 max_new_tokens=self.config.max_completion_length ,
329 num_return_sequences =1,
330 # Add other generation params if needed , e.g.,

top_p , temperature
331 do_sample=True , # Assuming sampling for reward

evaluation
332 top_p=self.config.top_p ,
333 temperature=self.config.temperature ,
334 )
335 # decode expects list of IDs , gen_output [0] is a

sequence of IDs (1D tensor)
336 generated_rna_bjuz_list =

self.tok_r.decode(gen_output) # decode from
custom_tokenizer returns a list of strings

337 generated_rna_bjuz = generated_rna_bjuz_list [0] if
generated_rna_bjuz_list else ""

338

339 # Convert bjuz to ACGU for rewarder
340 generated_rna_acgu =

generated_rna_bjuz.replace("b","A").replace("j","C").replace("u","U").replace("z","G").replace("
","")

341

43



342 total_reward += rewarder(generated_rna_acgu ,
env.protein_str) # Use env.protein_str

343

344 num_batches += 1
345

346 avg_loss = total_loss / num_batches if num_batches > 0 else 0
347 avg_reward = total_reward / num_batches if num_batches > 0

else 0
348

349 # Log to wandb
350 if wandb.run: # Check if wandb run is active
351 wandb.log({
352 "validation/loss": avg_loss ,
353 "validation/reward": avg_reward ,
354 "train/step": step # Use the global step passed to

evaluate
355 })
356

357 self.model.train()
358 return avg_loss , avg_reward
359

360 def train(self , epochs =1):
361 device = next(self.model.parameters ()).device
362 num_gen = self.config.num_generations
363 max_new = self.config.max_completion_length
364 eps_clip = self.config.EPSILON # Use from trainer ’s config

object
365 beta_val = self.config.BETA # Use from trainer ’s config

object
366 mu_val = self.config.MU # Use from trainer ’s config

object
367

368 # best_val_loss = float(’inf ’) # Not used currently
369 validation_interval = 100 # Validate every 100 steps
370 global_step_counter = 0 # For periodic validation and logging
371

372 for epoch in range(epochs):
373 random.shuffle(self.train_envs)
374 # Consider limiting train_envs for quicker epochs if

dataset is large: self.train_envs [:200]
375 for step_idx , env in enumerate(self.train_envs):
376 # 0) prepare inputs for one protein (batch_size =1)
377 input_ids , attention_mask = env.get_prompt_inputs ()
378 input_ids = input_ids.to(device)
379 attention_mask = attention_mask.to(device)
380 protein_str_val = env.protein_str # Use

env.protein_str
381

382 # 1) Sample once from _old (no grad)
383 # print(">>> Generating theta_old outputs for a

protein ")
384 with torch.no_grad ():
385 seq_old , logp_old = generate_with_log_probs(
386 model_obj=self.old_model , # Pass model_obj
387 input_ids=input_ids ,
388 attention_mask=attention_mask ,
389 num_return_sequences=num_gen ,
390 max_new_tokens=max_new ,
391 top_p=self.config.top_p ,
392 temperature=self.config.temperature ,
393 )
394 # print(">>> theta_old output generation is

completed ")
395 N, T_len = seq_old.shape # Renamed T to T_len to

avoid conflict
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396

397 # 3.1) build decoder_input_ids for teacher forcing
398 start_tok = self.model.config.decoder_start_token_id
399 start_col = torch.full((N,1), start_tok ,
400 device=device ,

dtype=torch.long)
401 dec_inp = torch.cat([start_col , seq_old[:, :-1]],

dim =1) # (N, T_len)
402

403 # 3.2) Prepare encoder inputs for batch N
404 enc_ids_repeated = input_ids.repeat_interleave(N,

dim =0) # Renamed enc_ids
405 enc_mask_repeated=

attention_mask.repeat_interleave(N, dim =0) #
Renamed enc_mask

406

407 # print(">>> Generating ref outputs for a protein ")
408 with torch.no_grad (): # ref_model does not require

grad
409 out_ref = self.ref_model(
410 input_ids=enc_ids_repeated ,
411 attention_mask=enc_mask_repeated ,
412 decoder_input_ids=dec_inp ,
413 )
414 logits_ref= out_ref.logits #

(N, T_len , V)
415 logp_ref = F.log_softmax(logits_ref , -1) #

(N, T_len , V)
416 logp_ref = logp_ref.gather(-1,

seq_old.unsqueeze (-1))\
417 .squeeze (-1).detach () #

(N, T_len), ensure detached
418 # print(">>> ref output generation is completed ")
419

420 # 2) Compute rewards & advantages (detach)
421 # print(">>> Started calculating rewards and

advantages ")
422 # tok_r.decode expects a batch of sequences (list of

list of IDs or Tensor)
423 # seq_old is already a batch of sequences (Tensor)
424 decoded_seq_old_bjuz_list =

self.tok_r.decode(seq_old) # Returns list of bjuz
strings

425 # Convert bjuz to ACGU for rewarder; rewarder expects
list of char lists or list of strings

426 decoded_seq_old_acgu_char_lists = [[char for char in
seq.replace("b", "A").replace("j",
"C").replace("u", "U").replace("z",
"G").replace(" ", "")] for seq in
decoded_seq_old_bjuz_list]

427

428 # Pass seq_old (token_ids on device),
decoded_seq_old_acgu_char_lists (Python list of
lists of chars), protein_str_val

429 rewards_tensor = calculate_reward(seq_old ,
decoded_seq_old_acgu_char_lists , input_ids ,
protein_str_val ,
pad_token_id=self.tok_r.tokenizer.pad_token_id ,
eos_token_id=self.tok_r.tokenizer.eos_token_id)

430 advantages =
calculate_advantage(rewards_tensor).detach ()

431

432 # Log reward stats to wandb
433 non_zero_rewards = rewards_tensor[rewards_tensor !=

0]. flatten ()
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434 if wandb.run: # Check if wandb run is active
435 if non_zero_rewards.numel () > 0:
436 wandb.log({
437 "reward/mean":

non_zero_rewards.mean().item(),
438 "reward/std":

non_zero_rewards.std().item(),
439 "reward/max":

non_zero_rewards.max().item(),
440 "reward/min":

non_zero_rewards.min().item(),
441 "train/step": global_step_counter
442 })
443 else:
444 wandb.log({
445 "reward/mean": 0.0, "reward/std": 0.0,

"reward/max": 0.0, "reward/min": 0.0,
446 "train/step": global_step_counter
447 })
448 # print(">>> Ended calculating rewards and

advantages ")
449

450 # 3) Inner GRPO updates on _
451 for inner_loop_idx in range(mu_val): # Renamed inner

to inner_loop_idx
452 out_new = self.model( # Renamed out to out_new
453 input_ids=enc_ids_repeated ,
454 attention_mask=enc_mask_repeated ,
455 decoder_input_ids=dec_inp ,
456 )
457 logits_new = out_new.logits

# (N, T_len , V)
458 logp_new = F.log_softmax(logits_new , -1)

# (N, T_len , V)
459 logp_new = logp_new.gather(-1,

seq_old.unsqueeze (-1))\
460 .squeeze (-1)

# (N, T_len)
461

462 # 3.3) clipped surrogate
463 ratio = torch.exp(logp_new - logp_old.detach ())

# Detach logp_old , it’s from old_model
464 clipped = ratio.clamp(1 - eps_clip , 1 + eps_clip)
465 loss_pg = - torch.mean(
466 torch.minimum(ratio * advantages ,
467 clipped * advantages)
468 )
469

470 # 3.4) K L penalty using f(u)=u - log u - 1
471 if beta_val > 0:
472 u = torch.exp(logp_ref - logp_new) #

logp_ref is already detached
473 kl_term = torch.mean(u - (logp_ref -

logp_new) - 1)
474 loss_total = loss_pg + beta_val * kl_term #

Renamed loss to loss_total
475 else:
476 kl_term = torch.tensor (0.0, device=device)
477 loss_total = loss_pg
478

479 # 3.5) debug prints (optional , can be verbose)
480 # print(f"Epoch {epoch +1} Step {step_idx} Inner

{inner_loop_idx} | "
481 # f"pg_loss ={ loss_pg.item():.4f}

kl={ kl_term.item():.4f}")
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482

483 if wandb.run: # Check if wandb run is active
484 wandb.log({
485 "loss/pg_loss": loss_pg.item(),
486 "loss/kl_term": kl_term.item(),
487 "loss/total": loss_total.item(),
488 "train/step": global_step_counter # Log

with global step
489 })
490

491 # 3.6) backprop & step
492 self.optimizer.zero_grad ()
493 loss_total.backward ()
494 torch.nn.utils.clip_grad_norm_(self.model.parameters (),

max_norm=self.config.max_grad_norm)
495 self.optimizer.step()
496

497 global_step_counter += 1 # Increment global step
498

499 # Run validation periodically
500 if self.eval_envs and global_step_counter %

validation_interval == 0:
501 val_loss , val_reward =

self.evaluate(step=global_step_counter) #
Pass global_step_counter

502 print(f"Global Step {global_step_counter}
Validation: loss={ val_loss :.4f}
reward ={ val_reward :.4f}")

503

504 # 4) sync _old _
505 self.old_model.load_state_dict(self.model.state_dict ())
506

507 print(f"--- End Epoch {epoch +1} ---")
508

509 # if wandb.run: # Check if wandb run is active # Moved finish
to main

510 # wandb.finish ()
511

512

513 def load_data(path):
514 prots , rnas = [], []
515 with open(path) as f:
516 for line in f:
517 line = line.strip()
518 if ’$’ not in line: continue
519 try:
520 p, r = line.split(’$’ ,1) # Split only on the first ’$’
521 prots.append(p); rnas.append(r)
522 except ValueError:
523 print(f"Skipping malformed line in data file:

{line}") # Handle lines without ’$’ if strip
didn’t catch it

524 return prots , rnas
525

526 if __name__ == ’__main__ ’:
527 # Initialize wandb once for the entire script run
528 # Hyperparameter tuning might reinitialize runs if configured to

do so.
529 wandb.init(project=global_config_module.WANDB_PROJECT ,

name="grpo -main -run", reinit=True) # Allow reinit for tuning
530

531 parser = argparse.ArgumentParser ()
532 # Arguments from global_config_module as defaults
533 parser.add_argument(’--train_data ’,

default=global_config_module.TRAIN_DATA)
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534 parser.add_argument(’--eval_data ’,
default=global_config_module.EVAL_DATA)

535 parser.add_argument(’--model_path ’,
default=global_config_module.MODEL_PATH)

536 parser.add_argument(’--protein_tokenizer ’,
default=global_config_module.PROTEIN_TOKENIZER)

537 parser.add_argument(’--rna_tokenizer ’,
default=global_config_module.RNA_TOKENIZER)

538 parser.add_argument(’--output_dir ’, default=’./ results_grpo ’) #
Different default from CustomGRPOConfig

539 parser.add_argument(’--epochs ’, type=int ,
default=global_config_module.NUM_TRAIN_EPOCHS)

540 parser.add_argument(’--learning_rate ’, type=float ,
default=global_config_module.LEARNING_RATE)

541 parser.add_argument(’--max_input_length ’, type=int ,
default=global_config_module.MAX_PROMPT_LENGTH)

542 parser.add_argument(’--max_completion_length ’, type=int ,
default=global_config_module.MAX_COMPLETION_LENGTH)

543 parser.add_argument(’--num_generations ’, type=int ,
default=global_config_module.NUM_GENERATIONS)

544 # top_p , temperature , max_grad_norm are not in
global_config_module , use CustomGRPOConfig defaults or add to
global_config_module

545 parser.add_argument(’--top_p ’, type=float , default =1.0)
546 parser.add_argument(’--temperature ’, type=float , default =1.0)
547 parser.add_argument(’--max_grad_norm ’, type=float , default =1.0)
548

549 # GRPO specific params from global_config_module
550 parser.add_argument(’--beta’, type=float ,

default=global_config_module.BETA)
551 parser.add_argument(’--epsilon ’, type=float ,

default=global_config_module.EPSILON)
552 parser.add_argument(’--mu’, type=int ,

default=global_config_module.MU)
553

554 parser.add_argument(’--tune_hyperparameters ’,
action=’store_true ’, help=’Run hyperparameter tuning with
Optuna ’)

555 parser.add_argument(’--n_trials ’, type=int , default =20,
help=’Number of trials for hyperparameter tuning ’)

556 args = parser.parse_args ()
557

558 # Setup
559 random.seed (42); np.random.seed (42); torch.manual_seed (42)
560 if torch.cuda.is_available (): torch.cuda.manual_seed_all (42) #

For GPU reproducibility
561

562 # Tokenizers & Model
563 tok_p = get_tokenizer("bpe", global_config_module.VOCAB_SIZE ,

global_config_module.MAX_LENGTH ,
tokenizer_path=args.protein_tokenizer)

564 tok_r = get_tokenizer("bpe", global_config_module.VOCAB_SIZE ,
global_config_module.MAX_LENGTH ,
tokenizer_path=args.rna_tokenizer)

565

566 # Ensure pad token IDs are set if BpeTokenizer class doesn ’t
handle it automatically after load

567 # The BpeTokenizer in ‘classifier/util/tokenizer.py‘ and
‘grpo -trainer/custom_tokenizer.py ‘

568 # sets special tokens using a dict. Let’s assume pad_token_id is
accessible.

569 # The ProteinRNAEnvironment needs these.
570 # tok_p.pad_token_id = tok_p.tokenizer.token_to_id ("<pad >") # Or

however it’s stored
571 # tok_r.pad_token_id = tok_r.tokenizer.token_to_id ("<pad >")
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572

573 model =
T5ForConditionalGeneration.from_pretrained(args.model_path).to(’cuda’
if torch.cuda.is_available () else ’cpu’)

574

575 # Data Envs
576 prots_train , rnas_train = load_data(args.train_data)
577 train_envs = [ProteinRNAEnvironment(p, r, tok_p , tok_r ,

args.max_input_length , args.max_completion_length) for p, r
in zip(prots_train , rnas_train)]

578 eval_envs = []
579 if args.eval_data and os.path.exists(args.eval_data):
580 prots_eval , rnas_eval = load_data(args.eval_data)
581 eval_envs = [ProteinRNAEnvironment(p, r, tok_p , tok_r ,

args.max_input_length , args.max_completion_length) for p,
r in zip(prots_eval , rnas_eval)]

582 print(f"Created {len(train_envs)} training environments and
{len(eval_envs)} evaluation environments.")

583

584 # Config for GRPO trainer
585 # Pass CLI args to override defaults in CustomGRPOConfig
586 grpo_trainer_config = CustomGRPOConfig(
587 output_dir=args.output_dir ,
588 learning_rate=args.learning_rate ,
589 max_prompt_length=args.max_input_length ,
590 max_completion_length=args.max_completion_length ,
591 num_generations=args.num_generations ,
592 top_p=args.top_p ,
593 temperature=args.temperature ,
594 max_grad_norm=args.max_grad_norm ,
595 BETA=args.beta ,
596 EPSILON=args.epsilon ,
597 MU=args.mu
598 )
599

600 if args.tune_hyperparameters:
601 print("Starting hyperparameter tuning ...")
602 from hyperparameter_tuning import run_hyperparameter_tuning #

Assuming it’s in the same directory
603

604 # The hyperparameter_tuning script will modify the BETA ,
EPSILON , MU attributes

605 # of the config object passed to it.
606 best_params = run_hyperparameter_tuning(
607 model=model ,
608 tok_p=tok_p ,
609 tok_r=tok_r ,
610 train_envs=train_envs ,
611 eval_envs=eval_envs ,
612 tuning_config=grpo_trainer_config , # Pass the trainer ’s

config object
613 n_trials=args.n_trials
614 )
615

616 # Update grpo_trainer_config with best parameters found by
Optuna study

617 # The run_hyperparameter_tuning function already modifies the
tuning_config object ’s attributes

618 # if designed to do so, or returns best_params.
619 # If it returns params , apply them:
620 if best_params:
621 grpo_trainer_config.BETA = best_params.get(’beta’,

grpo_trainer_config.BETA)
622 grpo_trainer_config.EPSILON = best_params.get(’epsilon ’,

grpo_trainer_config.EPSILON)
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623 grpo_trainer_config.MU = best_params.get(’mu’,
grpo_trainer_config.MU)

624

625 print("Best hyperparameters from tuning:")
626 print(f"BETA: {grpo_trainer_config.BETA}, EPSILON:

{grpo_trainer_config.EPSILON}, MU:
{grpo_trainer_config.MU}")

627 wandb.config.update(best_params , allow_val_change=True) # Log
best params to current wandb run

628

629 # Trainer
630 print("Starting training with config:")
631 print(vars(grpo_trainer_config)) # Print the config being used
632

633 trainer = ProteinRNAGRPOTainer(model , tok_p , tok_r , train_envs ,
eval_envs , grpo_trainer_config)

634 trainer.train(epochs=args.epochs)
635

636 if eval_envs: # Final evaluation after training
637 print("Performing final evaluation ...")
638 final_val_loss , final_val_reward =

trainer.evaluate(step=trainer.config.num_train_epochs *
len(train_envs)) # Approx global step

639 print(f"Final Validation: loss={ final_val_loss :.4f}
reward ={ final_val_reward :.4f}")

640

641 if wandb.run: # Ensure wandb run is finished
642 wandb.finish ()

File: grpo-trainer/reward_functions.py

Listing 14: Code Snippet
1 import numpy as np
2 from typing import List , Tuple , Dict , Any , Optional , Union
3 import RNA # ViennaRNA package for MFE calculation
4 import config as global_config_module # Use an alias
5 import get_binding_score
6

7 def calculate_gc_content(sequence: str) -> float:
8 if not sequence: # Check for empty sequence
9 return 0.0

10 gc_count = sequence.upper().count(’G’) +
sequence.upper().count(’C’) # Ensure uppercase

11 total_count = len(sequence)
12 return gc_count / total_count if total_count > 0 else 0.0
13

14 def calculate_gc_content_reward(sequence: str) -> float:
15 """
16 Calculate reward based on GC content.
17 Args: sequence: RNA sequence (ACGU)
18 Returns: Reward value between 0 and 1
19 """
20 if not sequence: return 0.0
21 gc_content = calculate_gc_content(sequence)
22

23 gc_min = global_config_module.GC_CONTENT_MIN
24 gc_max = global_config_module.GC_CONTENT_MAX
25

26 if gc_min <= gc_content <= gc_max:
27 return 1.0
28 else:
29 if gc_content < gc_min:
30 distance = gc_min - gc_content
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31 max_distance_possible = gc_min # from 0 to gc_min
32 # Reward decreases linearly from 1 (at gc_min) to 0 (at 0

GC content)
33 # Ensure max_distance_possible is not zero
34 return max(0.0, 1.0 - (distance / max_distance_possible

if max_distance_possible > 1e-6 else 1.0))
35 else: # gc_content > gc_max
36 distance = gc_content - gc_max
37 max_distance_possible = 1.0 - gc_max # from gc_max to 1.0
38 # Reward decreases linearly from 1 (at gc_max) to 0 (at

100% GC content)
39 return max(0.0, 1.0 - (distance / max_distance_possible

if max_distance_possible > 1e-6 else 1.0))
40

41

42 def calculate_mfe(sequence: str) -> float:
43 """
44 Calculate Minimum Free Energy for an RNA sequence using ViennaRNA.
45 Args: sequence: RNA sequence (ACGU)
46 Returns: MFE value (lower is better for stability)
47 """
48 if not sequence or not all(c in "ACGU" for c in

sequence.upper()): # Check for valid RNA sequence
49 # print(f"Warning: Invalid RNA sequence for MFE: {sequence }")
50 return 0.0 # Or handle error appropriately , MFE is usually

negative
51

52 try:
53 # ViennaRNA might be sensitive to non -ACGU characters or very

short sequences
54 if len(sequence) < 4: # Arbitrary minimum length for folding ,

adjust as needed
55 return 0.0
56 _, mfe_val = RNA.fold(sequence.upper()) # Use a different

name , mfe_val , ensure uppercase
57 return mfe_val
58 except Exception as e:
59 # print(f"Error calculating MFE for ’{sequence}’: {e}")
60 return 0.0 # Return a neutral value or error indicator
61

62 def calculate_mfe_reward(sequence: str) -> float:
63 """
64 Calculate reward based on MFE value. Normalized by length.
65 Lower MFE means more stable structure , which is better.
66 Args: sequence: RNA sequence (ACGU)
67 Returns: Reward value between 0 and 1
68 """
69 if not sequence:
70 return 0.0
71

72 mfe_val = calculate_mfe(sequence) # Renamed mfe to mfe_val
73

74 if len(sequence) == 0: # Should have been caught by
calculate_mfe , but double check

75 return 0.0
76

77 length_normalized_mfe = mfe_val / len(sequence)
78

79 # Target is highly negative MFE (e.g., -0.5 kcal/mol/nt is good)
80 # Let’s define a target normalized MFE , e.g., -0.5
81 # and a worst MFE , e.g., 0 or slightly positive.
82 # Reward can be 1 if length_normalized_mfe <= target_norm_mfe
83 # Reward can be 0 if length_normalized_mfe >= worst_norm_mfe
84 # Linear interpolation in between.
85
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86 target_norm_mfe = -0.5 # Example: very stable
87 worst_norm_mfe = 0.0 # Example: unstable or unfolded
88

89 if length_normalized_mfe <= target_norm_mfe:
90 return 1.0
91 elif length_normalized_mfe >= worst_norm_mfe:
92 return 0.0
93 else: # target_norm_mfe < length_normalized_mfe < worst_norm_mfe
94 # Linearly map from [worst_norm_mfe , target_norm_mfe] to [0,

1]
95 # Since target is more negative , (val - worst) / (target -

worst)
96 return (length_normalized_mfe - worst_norm_mfe) /

(target_norm_mfe - worst_norm_mfe)
97

98

99 def calculate_binding_affinity(protein_sequence: str , rna_sequence:
str) -> float:

100 """
101 Placeholder for binding affinity calculation.
102 Args: protein_sequence , rna_sequence (ACGU)
103 Returns: Binding affinity score between 0 and 1
104 """
105 # This should be replaced with a real model prediction
106 if not protein_sequence or not rna_sequence:
107 return 0.0
108

109 return get_binding_score(protein_sequence , rna_sequence)
110

111 def calculate_token_level_reward(
112 protein_sequence: str ,
113 partial_rna_sequence: str , # ACGU format
114 position: int , # Current length of partial_rna_sequence
115 max_length: int # Max possible length of RNA
116 ) -> float:
117 """
118 Calculate combined reward for a partial RNA sequence at a

specific position.
119 """
120 # Ensure partial_rna_sequence is not empty for component reward

functions
121 if not partial_rna_sequence:
122 return 0.0
123

124 gc_reward_val = calculate_gc_content_reward(partial_rna_sequence)
# Renamed gc_reward

125 mfe_reward_val = calculate_mfe_reward(partial_rna_sequence) #
Renamed mfe_reward

126 binding_reward_val = calculate_binding_affinity(protein_sequence ,
partial_rna_sequence) # Renamed binding_reward

127

128 # Weighting rewards (can be dynamic based on progress if desired)
129 # progress = position / max_length if max_length > 0 else 0
130 # Example: fixed weights from global config
131 combined_reward_val = ( # Renamed combined_reward
132 global_config_module.BINDING_AFFINITY_WEIGHT *

binding_reward_val +
133 global_config_module.GC_CONTENT_WEIGHT * gc_reward_val +
134 global_config_module.MFE_WEIGHT * mfe_reward_val
135 )
136

137 # Normalize combined reward to be between 0 and 1 if sum of
weights can exceed 1
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138 # sum_weights = global_config_module.BINDING_AFFINITY_WEIGHT +
global_config_module.GC_CONTENT_WEIGHT +
global_config_module.MFE_WEIGHT

139 # if sum_weights > 0:
140 # combined_reward_val = combined_reward_val / sum_weights
141 # else:
142 # combined_reward_val = 0.0
143

144 return max(0.0, min(1.0, combined_reward_val)) # Ensure it’s
within [0,1]

145

146

147 def rewarder(partial_rna_acgu: str , protein_sequence_str: str ,
protein_ids=None , rna_ids=None) -> float: # Renamed params

148 """
149 Compute the GRPO token -level reward for a partial RNA sequence

(ACGU)
150 given its protein prompt.
151 """
152 current_pos = len(partial_rna_acgu) # Renamed position to

current_pos
153 max_len_val = global_config_module.MAX_COMPLETION_LENGTH #

Renamed max_len
154

155 # Compute the combined t o k e n level reward
156 reward_value = calculate_token_level_reward( # Renamed reward to

reward_value
157 protein_sequence=protein_sequence_str , # Pass renamed param
158 partial_rna_sequence=partial_rna_acgu , # Pass renamed param

(ACGU)
159 position=current_pos ,
160 max_length=max_len_val
161 )
162 return float(reward_value)

File: grpo-trainer/.DS_Store

This is a system file (.DS_Store) generated by macOS. It typically contains custom attributes of its
containing folder, such as the position of icons or the choice of a background image. Its content is
not relevant as source code and is therefore omitted.

Directory: grpo-trainer/util/

File: grpo-trainer/util/create_val.py

Listing 15: Code Snippet
1 import pandas as pd
2 import random
3

4 # Set random seed for reproducibility
5 random.seed (42)
6

7 # Read the CSV file
8 # Ensure ’positive_sequences.csv’ is in the correct path or provide

full path
9 try:

10 df = pd.read_csv(’positive_sequences.csv’)
11 except FileNotFoundError:
12 print("Error: ’positive_sequences.csv’ not found. Please check

the path.")
13 exit()
14
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15

16 # Remove rows with missing RNA or protein sequences
17 df = df.dropna(subset =[’protein_seq ’, ’rna_sequence ’])
18

19 # Keep only protein_seq and rna_seq columns
20 df_selected = df[[’protein_seq ’, ’rna_sequence ’]]. copy() # Use

.copy() to avoid SettingWithCopyWarning
21

22 # Find the longest RNA sequence (on the selected dataframe)
23 if not df_selected.empty:
24 df_selected[’rna_length ’] =

df_selected[’rna_sequence ’]. astype(str).str.len() # Ensure
rna_sequence is string

25 max_rna_length = df_selected[’rna_length ’].max()
26 # Get the first such longest sequence if multiple exist
27 longest_rna_series = df_selected.loc[df_selected[’rna_length ’] ==

max_rna_length , ’rna_sequence ’]
28 longest_rna = longest_rna_series.iloc [0] if not

longest_rna_series.empty else "N/A"
29 else:
30 max_rna_length = 0
31 longest_rna = "N/A"
32 print("DataFrame is empty after dropping NA values.")
33

34

35 # Randomly select 100 rows for validation , if enough rows exist
36 num_samples = min(100, len(df_selected))
37 if num_samples > 0:
38 validation_df = df_selected.sample(n=num_samples ,

random_state =42).drop(columns =[’rna_length ’], errors=’ignore ’)
39 # Save to validation_rl.txt (protein ,rna format without header

for some tools)
40 # The original inference.py splits by ’,’, so CSV format is

expected
41 validation_df.to_csv(’validation_rl.txt’, index=False ,

header=False) # header=False if inference.py expects no header
42 print(f"Successfully created validation_rl.txt with

{len(validation_df)} sequences.")
43 else:
44 print("Not enough data to create validation_rl.txt")
45

46

47 # Print summary
48 print(f"Original dataset had {len(df)} rows , {len(df_selected) if

’df_selected ’ in locals () else 0} valid sequences after
cleaning.")

49 print(f"Longest RNA sequence length: {max_rna_length}")
50 print(f"Example of longest RNA sequence: {str(longest_rna)[:50]}...")

File: grpo-trainer/util/create_validation.py

Listing 16: Code Snippet
1 import pandas as pd
2 import random
3

4 # Set random seed for reproducibility
5 random.seed (42)
6

7 # Read the CSV file
8 # Ensure ’positive_sequences.csv’ is in the correct path or provide

full path
9 try:

10 df = pd.read_csv(’positive_sequences.csv’)
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11 except FileNotFoundError:
12 print("Error: ’positive_sequences.csv’ not found. Please check

the path.")
13 exit()
14

15 # Remove rows with missing protein sequences (and rna_seq for safety ,
though not explicitly checked before)

16 df = df.dropna(subset =[’protein_seq ’, ’rna_seq ’])
17

18

19 # Keep only protein_seq and rna_seq columns
20 df_selected = df[[’protein_seq ’, ’rna_seq ’]]. copy() # Use .copy() to

avoid SettingWithCopyWarning
21

22 # Find the longest RNA sequence
23 if not df_selected.empty:
24 # Ensure rna_seq is treated as string for .str accessor
25 df_selected[’rna_length ’] =

df_selected[’rna_seq ’]. astype(str).str.len()
26 max_rna_length = df_selected[’rna_length ’].max()
27 longest_rna_series = df_selected.loc[df_selected[’rna_length ’] ==

max_rna_length , ’rna_seq ’]
28 longest_rna = longest_rna_series.iloc [0] if not

longest_rna_series.empty else "N/A"
29 else:
30 max_rna_length = 0
31 longest_rna = "N/A"
32 print("DataFrame is empty after dropping NA values.")
33

34

35 # Randomly select 100 rows , if enough rows exist
36 num_samples = min(100, len(df_selected))
37 if num_samples > 0:
38 validation_df = df_selected.sample(n=num_samples ,

random_state =42).drop(columns =[’rna_length ’], errors=’ignore ’)
39 # Save to validation_rl.txt (protein ,rna format , no header)
40 # inference.py in the main directory splits by ’,’, so CSV format

is fine.
41 validation_df.to_csv(’validation_rl.txt’, index=False ,

header=False) # header=False if inference.py expects no header
42

43 print(f"Successfully created validation_rl.txt with
{len(validation_df)} sequences.")

44 else:
45 print("Not enough data to create validation_rl.txt")
46

47

48 print(f"Original dataset had {len(df)} rows , {len(df_selected) if
’df_selected ’ in locals () else 0} valid sequences after
cleaning.")

49 print(f"Longest RNA sequence length: {max_rna_length}")
50 print(f"Example of longest RNA sequence: {str(longest_rna)[:50]}...")

# Print first 50 characters

File: grpo-trainer/util/generate_data.py

Listing 17: Code Snippet
1 import os
2 import csv
3 from tqdm import tqdm # progress bar library
4

5 #
------------------------------------------------------------------------------
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6 # 1) Define paths
7 #

------------------------------------------------------------------------------
8 FASTA_FOLDER =

"/data6/helya/dataset/CLIPdb_cluster/cd_hit_results_RBPs/identity_90"
9 PROTEIN_CSV = "/data6/alpsencer/reinforce_rna/protein_seqs.csv" #

CSV with columns: prot_name , seq
10 OUTPUT_CSV = "./ output.csv" # Output in the current directory of

this script
11

12 #
------------------------------------------------------------------------------

13 # 2) Read the protein sequences into a dictionary (case -insensitive)
14 #

------------------------------------------------------------------------------
15 protein_dict = {}
16 try:
17 with open(PROTEIN_CSV , "r", newline="") as f_in:
18 reader = csv.DictReader(f_in)
19 if ’prot_name ’ not in reader.fieldnames or ’seq’ not in

reader.fieldnames:
20 print(f"Error: PROTEIN_CSV ’{PROTEIN_CSV}’ must have

’prot_name ’ and ’seq’ columns.")
21 exit()
22 for row in reader:
23 prot_name = row["prot_name"].strip ().lower() # using

lowercase keys
24 protein_dict[prot_name] = row["seq"]
25 except FileNotFoundError:
26 print(f"Error: Protein CSV file not found at ’{PROTEIN_CSV}’")
27 exit()
28

29 #
------------------------------------------------------------------------------

30 # 3) Process FASTA files and write to CSV
31 #

------------------------------------------------------------------------------
32 if not os.path.isdir(FASTA_FOLDER):
33 print(f"Error: FASTA folder not found at ’{FASTA_FOLDER}’")
34 exit()
35

36 with open(OUTPUT_CSV , "w", newline="") as f_out:
37 writer = csv.writer(f_out)
38 writer.writerow (["protein_name", "protein_seq", "rna_sequence",

"strand", "pair"])
39

40 # Get all .fa files
41 fasta_files = [f for f in os.listdir(FASTA_FOLDER) if

f.endswith(".fa") or f.endswith(".fasta")]
42

43 if not fasta_files:
44 print(f"No FASTA files found in ’{FASTA_FOLDER }’.")
45

46 # Loop over the files with a progress bar
47 for file_name in tqdm(fasta_files , desc="Processing FASTA files"):
48 # Derive protein name from file name (first token before

underscore)
49 protein_name_raw = file_name.split("_")[0]
50 protein_seq = protein_dict.get(protein_name_raw.lower(),

"NA") # Default to "NA" if not found
51 fa_path = os.path.join(FASTA_FOLDER , file_name)
52

53 current_rna_sequence = ""
54 header_info = "" # Store the most recent header
55
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56 # Read all lines from the FASTA file
57 try:
58 with open(fa_path , "r") as fa_in:
59 for line in fa_in:
60 line = line.strip()
61 if not line: continue # Skip empty lines
62

63 if line.startswith(">"):
64 # If we have a sequence buffered , process it

with previous header
65 if current_rna_sequence and header_info:
66 strand = "NA"
67 # Process header_info for strand
68 temp_header = header_info
69 if temp_header.endswith("(+)"):
70 strand = "+"
71 temp_header = temp_header [:-3]. strip ()
72 elif temp_header.endswith("(-)"):
73 strand = "-"
74 temp_header = temp_header [:-3]. strip ()
75 writer.writerow ([ protein_name_raw ,

protein_seq , current_rna_sequence ,
strand , "+"])

76

77 # Start new sequence
78 header_info = line [1:] # Store new header

without ’>’
79 current_rna_sequence = ""
80 else:
81 current_rna_sequence += line # Append

sequence lines
82

83 # Process the last sequence in the file
84 if current_rna_sequence and header_info:
85 strand = "NA"
86 temp_header = header_info
87 if temp_header.endswith("(+)"):
88 strand = "+"
89 temp_header = temp_header [:-3]. strip ()
90 elif temp_header.endswith("(-)"):
91 strand = "-"
92 temp_header = temp_header [:-3]. strip ()
93 writer.writerow ([ protein_name_raw , protein_seq ,

current_rna_sequence , strand , "+"])
94

95 except Exception as e:
96 print(f"Error processing file {file_name }: {e}")
97 continue # Skip to next file
98

99 # Optional: print progress for each file (can be too verbose
with tqdm)

100 # print(f"Processed file: {file_name }")
101 print(f"Processing complete. Output written to {OUTPUT_CSV}")

File: grpo-trainer/util/test_tokenizer.py

Listing 18: Code Snippet
1 from transformers import PreTrainedTokenizerFast
2 from itertools import islice
3 import os # For checking file existence
4

5 TOKENIZER_FILE_PATH =
"/data6/alpsencer/tokenizers/bpe_protein_1000_1024.json"
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6 TRAIN_DATA_PATH = "/data6/alpsencer/reinforce_rna/sample_1K.txt" #
Renamed TRAIN_DATA to TRAIN_DATA_PATH

7

8

9 if not os.path.exists(TOKENIZER_FILE_PATH):
10 print(f"Error: Tokenizer file not found at {TOKENIZER_FILE_PATH}")
11 exit()
12

13 tokenizer = PreTrainedTokenizerFast(
14 tokenizer_file=TOKENIZER_FILE_PATH ,
15 unk_token="<unk >",
16 pad_token="<pad >",
17 eos_token="</s>", # EOS token if your model uses it for proteins
18 bos_token="<s>", # BOS token if your model uses it
19 model_max_length =1024,
20 padding_side="left", # Ensure this matches model’s expectation

for T5 encoder
21 )
22

23 # T5 usually expects a sentence -piece like format , often with EOS at
the end of input.

24 # If your BPE tokenizer was trained without explicit EOS for protein
inputs ,

25 # this setup is fine. The main thing is consistency with training.
26

27 if not os.path.exists(TRAIN_DATA_PATH):
28 print(f"Error: Train data file not found at {TRAIN_DATA_PATH}")
29 exit()
30

31 print(f"Using tokenizer: {TOKENIZER_FILE_PATH}")
32 print(f"Pad token: ’{tokenizer.pad_token}’, ID:

{tokenizer.pad_token_id}")
33 print(f"EOS token: ’{tokenizer.eos_token}’, ID:

{tokenizer.eos_token_id}")
34 print(f"UNK token: ’{tokenizer.unk_token}’, ID:

{tokenizer.unk_token_id}")
35 print(f"BOS token: ’{tokenizer.bos_token}’, ID:

{tokenizer.bos_token_id}")
36

37

38 with open(TRAIN_DATA_PATH) as f:
39 for line_num , line_content in enumerate(islice(f, 5)): # Test a

few lines
40 line_content = line_content.strip()
41 if not line_content or "$" not in line_content:
42 print(f"Skipping malformed line {line_num +1}:

{line_content}")
43 continue
44

45 # Assuming format is protein$rna or protein$something_else
46 protein_seq , _ = line_content.split("$", 1) # Renamed protein

to protein_seq
47

48 # For T5, inputs are often not lowercased by default unless
normalizer does it.

49 # The custom BpeTokenizer class had Lowercase normalizer.
50 # PreTrainedTokenizerFast directly from file might or might

not apply it
51 # depending on how the tokenizer.json was saved. Assume it’s

handled or not critical for this test.
52

53 # Some tokenizers add special tokens automatically , some
don’t.

54 # For T5, usually you’d add EOS to the protein input if it
was trained that way.
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55 # protein_input_for_tokenizer = protein_seq +
tokenizer.eos_token # Example if EOS is needed

56 protein_input_for_tokenizer = protein_seq
57

58 enc = tokenizer(
59 protein_input_for_tokenizer ,
60 truncation=True ,
61 padding="max_length", # Pad to model_max_length
62 max_length=tokenizer.model_max_length , # Use tokenizer ’s

max_length
63 return_tensors=None , # Get lists of IDs
64 add_special_tokens=True # Let tokenizer handle BOS/EOS

based on its config
65 )
66

67 input_ids_list = enc["input_ids"] # Renamed ids to
input_ids_list

68 attention_mask_list = enc["attention_mask"] # Renamed mask to
attention_mask_list

69

70 # Calculate real length based on attention mask
71 # For left padding , actual tokens are at the end.
72 try:
73 first_real_token_idx = attention_mask_list.index (1)
74 real_len = len(input_ids_list) - first_real_token_idx
75 real_ids = input_ids_list[first_real_token_idx :]
76 except ValueError: # If no 1 in attention_mask (e.g. all

padding)
77 real_len = 0
78 real_ids = []
79

80

81 print(f"\n=== PROTEIN PROMPT (Line {line_num +1}) ===")
82 print("Original:", protein_seq [:60] + ("..." if

len(protein_seq) > 60 else ""))
83 # print("Input to tokenizer :",

protein_input_for_tokenizer [:60] + ("..." if
len(protein_input_for_tokenizer) > 60 else ""))

84

85 print("\nTokenized IDs (first 10 of padded):",
input_ids_list [:10])

86 print("Tokenized IDs (last 10 of padded):",
input_ids_list [ -10:])

87 print("Attention Mask (first 10):", attention_mask_list [:10])
88 print("Attention Mask (last 10):", attention_mask_list [ -10:])
89

90 print("\n[Padded left real tokens at end]")
91 if real_ids:
92 print("Real IDs (first 10):", real_ids [:10])
93 print("Real IDs (last 10):", real_ids [ -10:])
94 print("Real Tokens (first 10):",

tokenizer.convert_ids_to_tokens(real_ids [:10]))
95 print("Real Tokens (last 10):",

tokenizer.convert_ids_to_tokens(real_ids [ -10:]))
96 print("Real token count:", real_len)
97 decoded_real = tokenizer.decode(real_ids ,

skip_special_tokens=False) # See special tokens
98 decoded_real_skip_special = tokenizer.decode(real_ids ,

skip_special_tokens=True)
99 print("Decoded (real tokens , keep special):",

decoded_real [:60] + ("..." if len(decoded_real) > 60
else ""))

100 print("Decoded (real tokens , skip special):",
decoded_real_skip_special [:60] + ("..." if
len(decoded_real_skip_special) > 60 else ""))
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101 else:
102 print("No real tokens found (all padding or empty

input).")
103 print(" \n")
104 # break # remove ’break ’ if you want to sample more lines
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