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Abstract

Generating RNA sequences that effectively bind to target proteins is a pivotal chal-
lenge in bioinformatics with significant implications for therapeutic development
and understanding biological mechanisms. This work focuses on enhancing the
performance of a pre-fine-tuned T5 encoder-decoder transformer model for protein-
conditional RNA generation. We introduce a novel application of Group Relative
Policy Optimization (GRPO), a state-of-the-art reinforcement learning (RL) tech-
nique, to refine the generation process. A key component of our framework is
a custom-designed, multi-faceted reward function that incorporates scores from
a newly trained protein-RNA binding classifier, along with biologically relevant
metrics such as GC content and Minimun Free Energy (MFE) of the generated
RNA sequences. The binding classifier itself is trained on positive examples from
the CLIPDB dataset and negative examples generated through data augmenta-
tion by shuffling RNA sequences. By leveraging GRPO with this tailored reward
system, we aim to guide the T5 model towards producing RNA sequences with
improved binding affinity and structural stability, thereby advancing the capabilities
of computational RNA design.

1 Introduction

The interaction between RNA molecules and proteins is fundamental to a vast array of cellular
processes, including gene regulation, RNA processing, and translation [1]]. Dysregulation of these
interactions is often implicated in various diseases, making the ability to design RNA sequences that
can specifically bind to target proteins a critical area of research for therapeutic interventions and
synthetic biology [2]. While traditional experimental methods for identifying such RNA aptamers
can be laborious and costly, computational approaches, particularly those leveraging deep learning,
offer a promising avenue for accelerated discovery.

Recent advancements in transformer-based language models have demonstrated remarkable success
in modeling biological sequences, capturing complex patterns and dependencies within protein and
nucleic acid "languages" [2]. These models can be fine-tuned for specific generative tasks, such as
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producing RNA sequences conditioned on a given protein target. Our prior work involved fine-tuning
a T5 encoder-decoder model on protein-RNA pairs from datasets like CLIPDB [3]] to generate
potential RNA binders. However, supervised fine-tuning alone may not fully optimize for desired
downstream properties like binding strength or structural stability.

Reinforcement learning (RL) has emerged as a powerful paradigm for optimizing generative models
towards specific objectives, going beyond what can be achieved with static datasets. Techniques like
Proximal Policy Optimization (PPO) [4] and more recent advancements such as Direct Preference
Optimization (DPO) [5] and Group Relative Policy Optimization (GRPO) [6/ [7] have shown success
in aligning large language models (LLMs) with human preferences or complex reward signals.
Inspired by the success of GRPO in enhancing reasoning capabilities in LLMs like DeepSeek-R1
(DeepSeekCoder in some contexts) 7], we propose to adapt this methodology for our RNA generation
task.

This paper details our approach to enhance a pre-fine-tuned TS model for RNA generation using
GRPO. Our contributions are threefold: 1) The development of a dedicated protein-RNA binding
classifier to provide a quantitative measure of binding likelihood, trained on curated positive data from
CLIPDB and augmented negative data generated by shuffling. 2) The design of a composite reward
function that integrates the classifier’s binding score with crucial biophysical properties of RNA: GC
content for structural integrity and MFE for thermodynamic stability. 3) The implementation and
application of the GRPO algorithm to an encoder-decoder transformer for this specific bioinformatics
task, which, to our knowledge, is a novel application area for GRPO in biomolecular sequence design.
We hypothesize that this RL-enhanced approach will lead to the generation of RNA sequences with
superior binding characteristics and stability compared to the base fine-tuned model and other baseline
approaches.

The remainder of this report is organized as follows: Section [2]reviews relevant literature. Section [3]
describes our methodology, including the base model, binding classifier, reward function, and GRPO
implementation. Section ] presents our experimental results. Section [5]discusses the implications of
our findings, and Section [6] concludes the report.

2 Related Work

Our work builds upon advances in three primary areas: transformer models for bioinformatics,
reinforcement learning for large language models, and the application of RL in biological sequence
design.

2.1 Transformer Models in Bioinformatics

Transformer architectures [8]] have become a cornerstone in bioinformatics for both understanding
and generating biological sequences. Protein language models such as ProtTrans [9] and ProtGPT2
[LO] pre-train transformers on vast protein sequence databases, learning rich representations that
capture the "language of life" and can generate novel, plausible protein sequences. These embeddings
have proven effective for various downstream prediction tasks.

Similarly, transformers have been applied to RNA sequence modeling. GenerRNA [11]] introduced
a large-scale pre-trained GPT-2 style model for de novo RNA design, demonstrating the ability to
generate novel RNA sequences with realistic structural features. RNAGEN [[12]], from CicekLab at
Bilkent, employed a Generative Adversarial Network (GAN) with a WGAN-GP architecture for RNA
generation, capable of incorporating external predictors as guidance. More recently, RNAtranslator
[L3], also a CicekLab work, framed protein-conditional RNA design as a sequence-to-sequence
translation task, using an encoder-decoder transformer to generate RNA sequences likely to interact
with a given protein input. Our base model aligns with this conditional generation paradigm.

2.2 Reinforcement Learning for Large Language Models

RL has been instrumental in fine-tuning LLMs to align with human preferences or specific task
objectives, a process often referred to as RLHF (RL from Human Feedback). PPO [4] is a widely
adopted algorithm for this, known for its stability, and was famously used in models like InstructGPT
and ChatGPT. However, PPO-based RLHF can be complex and resource-intensive.



To address these challenges, alternative methods have emerged. DPO [5] reframes preference-based
alignment as a simpler classification problem, often matching or exceeding PPO performance with
greater stability. GRPO [6]], introduced by Shao et al. (2024) for DeepSeekMath, enhances training
stability and efficiency by using relative rewards from grouped trajectories. Guo et al. (2024) further
utilized GRPO in DeepSeekCoder (also referred to as DeepSeek-R1 contextually) [7], demonstrating
its ability to induce structured reasoning behaviors even with self-supervised rewards, eliminating the
need for a pre-learned reward model in some cases. Our choice of GRPO is motivated by these recent
successes and its potential for stable optimization with complex, potentially noisy reward signals
from biological predictors.

2.3 Reinforcement Learning in Bioinformatics

RL has also found applications in directly optimizing biological sequences. Early work by Eastman
et al. (2018) [14]] used deep RL for the RNA inverse folding problem, training a policy network to
design sequences that fold into a target secondary structure. Subsequent works like LEARNA [[15]
and EternaRL [16] (as cited in [17]) improved upon this, and DRAG [18]] introduced a hierarchical
graph-based RL agent for complex RNA topologies.

In protein engineering, ProteinRL [19] used policy-based RL to guide a generative PLM towards
desired sequence properties like charge or solubility. Stocco et al. (2023) [20] (note: year corrected
based on common citation patterns, please verify) applied a DPO variant (DPO_pLM) to align a
protein generator with an external oracle (binding affinity predictor), rapidly identifying high-affinity
binders. These examples demonstrate RL'’s potential to explore vast sequence spaces and optimize for
functional properties, a capability we aim to harness for RNA-protein binding. Our work distinguishes
itself by applying GRPO to an encoder-decoder architecture for conditional RNA generation, guided
by a multi-component reward including a custom-trained binding classifier.

3 Methods

Our methodology integrates a pre-fine-tuned TS5 model with a novel protein-RNA binding classifier, a
multi-component reward system, and GRPO algorithm for reinforcement learning-based refinement.

Figure 1: T5 Model Architecture

3.1 Base Model and Tokenization

The foundation of our work is a TS5 encoder-decoder transformer model, specifically
T5ForConditionalGeneration [21], which was previously pretrained and fine-tuned for the task
of generating RNA sequences conditioned on a protein sequence input. This base model features an
architecture with a hidden size (dyno4e1) 0f 512, a feed-forward network dimension (dys) of 1024,
and key/value dimensions (dg,,) of 64. Both the encoder and decoder stacks consist of 6 layers, each
employing 12 attention heads. The achitecture of TS5 is shown in Figure[T]

For sequence processing, custom Byte Pair Encoding (BPE) tokenizers were trained independently
for protein and RNA sequences. Each tokenizer has a vocabulary size of 1000. The model is
configured to handle a maximum sequence length of 1024 tokens. The initial supervised fine-tuning
of this TS model utilized protein-RNA interaction data sourced from the CLIPDB dataset [3[]. This



dataset provides interacting sequences in FASTA format, and the corresponding protein sequences
for CLIPDB entries were obtained through database scraping. The specific pre-fine-tuned model
checkpoint used in this work can be found in the additional package we provide.

3.2 Protein-RNA Binding Classifier

To provide a quantitative reward signal indicative of binding likelihood, we developed and trained a
dedicated protein-RNA binding classifier. This classifier is designed to predict a binding probability
score, ranging from O to 1, for a given protein-RNA pair.

The training data for the classifier was meticulously prepared. Positive interaction examples were
directly sourced from the CLIPDB dataset. To generate negative samples and ensure a balanced
dataset, RNA sequences from these positive pairs were shuffled. This process disrupts potential
binding sites while preserving the original nucleotide composition, thereby creating a corresponding
negative RNA sequence for each positive protein-RNA pair [22]]. The classifier expects input in the
format protein_sequence$rna_sequence.

Feature representation for the classifier involves generating embeddings for both protein and RNA
sequences using our base T5 model. Protein embeddings are derived by taking the mean-pooled
output of the encoder’s hidden states for an input protein sequence. RNA embeddings are obtained
from the decoder’s output, specifically by using the hidden state of the CLS token (the first token
of the last layer) for an input RNA sequence. Both protein and RNA embeddings undergo L2
normalization before being fed to the classifier.

The classifier, referred to as MLPBindingClassifier, is a Multi-Layer Perceptron (MLP) that
ingests concatenated L2-normalized protein and RNA embeddings. This combined embedding is
passed through three fully connected layers with 512, 256, and 128 neurons, respectively. Each dense
layer is followed by a ReL.U activation and a dropout layer (dropout rate = 0.2) to mitigate overfitting.
The final layer produces a single scalar output via a sigmoid activation, representing the predicted
binding probability. The MLPBindingClassifier was trained for 65 epochs on a dataset of 100 000
positive and 100 000 negative examples using the Adam optimizer with a learning rate of 1 x 107>
and a weight decay of 0.01 (L2 regularization), optimizing the binary cross-entropy loss on NVIDIA
2080 Ti GPUs.

3.3 Reward Function Design

To guide the reinforcement learning agent effectively, we designed a composite reward function,
Riotar, aimed at promoting RNA sequences that exhibit not only a high likelihood of binding to the
target protein but also possess sound structural properties. This total reward is a weighted sum of
three distinct components:

Riotal = Whinding * Rbinding + Wac - Rec + wyre - Rure. (D

In our experiments, the weights were set to Wyinding = 0.2, wgc = 0.4, and wprpg = 0.4, reflecting
a balanced consideration of binding and structural stability.

The first component, the Binding Affinity Reward (Ry;nding). is directly derived from the output of
our trained protein-RNA binding classifier, as described in the preceding section. This score, ranging
from O to 1, quantifies the predicted binding likelihood between the input protein and the generated
RNA sequence.

The second component, the GC Content Reward (R¢ ), encourages the generation of RNA sequences
with a Guanine-Cytosine (GC) content [23] falling within an optimal range, typically associated with
stable secondary structures. We define this range as 40% to 60% GC content. The reward Rgc(s)
for an RNA sequence s is formulated as:

1.0 if 0.4 < GC_content(s) < 0.6
Rgo(s) = { 1.0 — 104=6Ccomen(o)l ¢ GC_content(s) < 0.4 )
1.0 — W if GC_content(s) > 0.6,

where GC_content(s) is the fractional GC content of sequence s.

The third component, the MFE Reward (R, rE), incentivizes RNA sequences predicted to form
thermodynamically stable secondary structures[24]. The MFE for a sequence s is calculated using



the ViennaRNA package [24]]. To account for sequence length variations, we normalize the MFE
by the sequence length: M FE,, ., (s) = MFE(s)/length(s). A lower (more negative) MFE value
generally indicates greater structural stability. We set a target for good stability at a normalized MFE
of less than -0.2 kcal/mol per nucleotide. The reward Ry, r g (s) is then defined as:

1.0 it MFEporm(s) < —2
RMFE(S) = MFEnorm(S)/ -2 if —2< MFEnorm(S) <0 3
0.0 if MFEorm(s) > 0.

To ensure computational efficiency, particularly when processing batches of generated sequences, the
calculation of these individual reward components is parallelized across available CPU cores using
the Python ‘multiprocessing‘ library.

3.4 Group Relative Policy Optimization (GRPO)

We employ GRPO [6} [7] to fine-tune our TS5 model. GRPO is an on-policy actor-critic algorithm
that aims to improve policy updates by considering relative advantages within a group of sampled
trajectories.

The GRPO algorithm aims to optimize the following objective, where € and 3 are hyperparameters:
Jerpo(0) = Elg ~ P(Q), {0} ~ 70,,,(0la)]

G ‘Oil
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The core GRPO algorithm as applied in our work is summarized in Algorithm I}

Algorithm 1 Iterative Group Relative Policy Optimization

Require: Policy network 7y, reference policy 7.y, old policy 7,4, number of generations per
prompt G, KL coefficient 3, clipping parameter €, inner loop updates .
1: Initialize mg, Tref < o, Told < Mo
2: for each training iteration do
3: Sample a batch of protein prompts P; from ‘TRAINp AT A

4: each protein p € P;
5: Generate G RNA sequences S, ;, with log probabilities from 7,4(s|p)
6: Calculate rewards R(.S), ) for prefixes of each sequence using the reward function.
7: Calculate advantages A(S),4) by normalizing rewards per time-step.
8: for ) = 1topudo
9: Compute policy ratios r;(0) = %
10: Compute clipped surrogate objective
11: LCEIP (g) Et min rtg(H At,Cllp r4(0),1 —¢e, 1+ e)jlt)]
12: Compute KL penalty: L =4 DKL(m;( | s)||mrer(¢]s))
13: Update 7y by maximizing jGRpo(G) LEEIP(9) — LKL(9)
14: Told < To
15:

GRPO does not use any value model. Instead, it calculates advantages using rewards of the group as
seen in Figure|2| This approach allows GRPO to focus on cooperative behavior by leveraging shared
outcomes, rather than relying on value estimates. By using actual group rewards, GRPO encourages
policies that directly optimize for collective performance.



Figure 2: Comparison between GRPO and PPO. GRPO does not use any value model [6].

Implementation Details. The GRPO algorithm was implemented with our TS5 model serving as
the policy network (mg) being trained. A frozen copy of the initial pre-fine-tuned TS model (before
GRPO) was maintained as the reference policy (7,.s). An additional copy, the old policy (7s4), wWas
used for sampling trajectories at the beginning of each GRPO iteration and was synchronized with 7
after p inner loop updates.

During each training iteration, for every protein prompt drawn from the training data, we sample

K = 8 complete RNA sequences {yik%k }521 from the current old policy my4. To enable fine-grained
credit assignment at each generation step, we compute the total reward (Equation[T)) not only on the
full sequence but also on every prefix. Concretely, for each sampled sequence y§k:)rk and each time

stept € {1,...,Ty}, we form the prefix yﬂ? and evaluate

Rlotal (yﬁkt) ) .

This produces a reward signal at each position ¢ that reflects the quality of the partial sequence up to
that token. We then normalize these prefix-level rewards across the batch and time steps (applying a
mask to ignore padded positions) to obtain the advantage estimates Agk) used in the policy update.
This prefix-based scheme ensures that each token receives credit proportional to its contribution to

both binding affinity and structural criteria.

The policy network 7y was then updated over j inner loop steps (with 4 = 5, determined by Optuna)
to maximize the GRPO objective function. This objective incorporates a clipped surrogate term
and a Kullback-Leibler (KL) divergence penalty against the reference policy 7,y to ensure training
stability. The KL divergence coefficient 8 was set to approximately 0.0496, and the PPO-style
clipping parameter € was set to approximately 0.1736, both values derived from hyperparameter
optimization. The AdamW optimizer was employed for policy updates with a learning rate 1 x 1075,

Key GRPO hyperparameters, namely [, €, and i, were systematically optimized using the Optuna
framework [25]]. All training procedures were executed on NVIDIA TITAN GPUs. Comprehensive
logging of the training progress, including various loss components and the individual constituents of
our composite reward, was performed using Weights & Biases.

3.5 Experimental Setup

All experiments were conducted under identical conditions to facilitate fair comparison of three
models: our GRPO-enhanced TS5 model, the base TS model (fine-tuned prior to GRPO refinement),
and the literature benchmark RNAGen [12f]. Performance was evaluated on a held-out set of protein
prompts. During each iteration of reinforcement learning, we used a batch size of 40 protein prompts
and sampled eight RNA sequences per prompt from the policy. Protein inputs were truncated to 1 024
tokens, and RNA outputs were limited to 256 tokens. The GRPO refinement was applied for three
epochs over the training data.

To assess model behavior, we computed four metrics on the generated RNA sequences: the mean GC
content to evaluate nucleotide composition and its influence on structural stability; the distribution of
MEFE, to examine predicted secondary-structure stability; the mean composite reward value of each
token (Equation [T to capture the joint contributions of binding affinity and structural criteria; and the
mean DeepCLIP score [22], to provide an independent measure of predicted RNA-protein binding
strength based on the supervised model.



4 Results

This section presents the key results from our experiments, including the performance of the bind-
ing classifier, GRPO training dynamics, hyperparameter optimization, and a comparison of RNA
sequences generated by the base model, the baseline model, versus the GRPO-enhanced model.

4.1 Binding Classifier Performance

The protein—RNA binding classifier serves as the foundational reward signal for our RL agent. Trained
over 65 epochs, the MLPBindingClassifier exhibited a steady decline in validation loss, eventually
converging toward a plateau. This trend indicates that the classifier successfully learned to distinguish
between binding and non-binding pairs.

4.2 Optuna Hyperparameter Sweep and GRPO Training with Tuned Parameters

We first conducted a preliminary Optuna hyperparameter sweep over 10 trials to identify promising
GRPO configurations. The search explored a KL-divergence coefficient 3 sampled uniformly from
[0.01,0.10], a clipping parameter e sampled uniformly from [0.05, 0.20], and an integer number of
inner-loop updates i drawn from the range [3, 8].

Figure 3] presents the evolution of the mean composite reward and its standard deviation across these
trials, illustrating which parameter sets yielded superior performance. From this analysis, the trial
achieving the highest average reward was selected for further evaluation.

reward/std
— trial_9 trial_8 — trial_6 - reward/mean
= trial_4 trial_3 == trial_2 == trial_1 == trial_0 v — trial 9 trial 8 — trial 6 g =

= trial_4 trial_3 = trial_2 = trial_1 = trial_0 v

(a) Mean composite reward across Optuna (b) Reward standard deviation across Optuna
trials trials

Figure 3: Optuna sweep results over 10 trials: (a) evolution of mean composite reward; (b) evolution
of reward standard deviation.

Table|[T]lists the optimal hyperparameter values identified by Optuna, which were then applied in an
extended GRPO training run.

Table 1: Optimal GRPO hyperparameters found by Optuna.

Hyperparameter Optimal Value
B (KL coefficient) 0.0496
€ (clipping) 0.1736

1 (inner-loop updates) 5

Using these tuned hyperparameters, we performed an extended GRPO training run. As shown in
Figure] the mean composite reward rapidly increased to approximately 0.70 before plateauing, while
the reward standard deviation fell below 0.02, indicating consistently high-quality RNA sequence
generation under the optimized configuration.
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Figure 4: GRPO training dynamics using Optuna-tuned parameters: (a) mean reward reaches ~0.70
within 8 000 steps; (b) reward variability drops below 0.02, demonstrating stable optimization.

4.3 Comparison of Generated RNA Sequences

To evaluate the impact of GRPO fine-tuning on RNA generation, we compared three models on a
held-out set of protein prompts: (i) our GRPO-enhanced T5 model, (ii) the base TS5 model fine-tuned
prior to GRPO refinement (“Base TS Model”), and (iii) the GAN-based RNAGEN model from the
literature [12]] (“RNAGEN”). We generated eight RNA sequences per prompt for each model and
computed several key metrics, including composite reward, DeepCLIP score, GC content, MFE, and
sequence generation loss against ground truth.

Binding Affinity Figure 5] presents the DeepCLIP binding-score distributions for RNA sequences
generated by the Base T5 and our GRPO-Tuned T5 models against the RBMS5 protein. Consistent
with the composite-reward improvements, our tuned model not only shifts the median binding score
higher but also yields a tighter distribution of stronger predicted interactions.

DeepCLIP Binding Scores for the Generated RNA Sequences

Figure 5: DeepCLIP binding scores for RNA sequences generated by the Base T5 and GRPO-Tuned
T5 models evaluated on the RBMS5 protein.

Table 2] gives the mean DeepCLIP score for RBM5. Our GRPO-Tuned T5 model achieves a
substantially improved DeepCLIP binding score (0.2478 vs. 0.1539), indicating more favorable
overall sequence generation and stronger RNA—protein interactions.

Table 2: Performance summary for the Base TS5 and GRPO-Tuned T5 models on RBMS5 binding.
Metric Base TS Model GRPO-Tuned TS

Mean DeepCLIP Score (RBMS) 0.1539 0.2478

GC Content Analysis The GC content of generated sequences is crucial for RNA stability and
function. Figure [f]displays the GC content distributions for the three models. Our Model centers



around a mean of 53.83% GC content with a notably low standard deviation of 2.40%, indicating
tight control in the optimal range. The Base Model trends higher, with a mean GC content of 62.16%
and greater variability (STD 7.25%), while RNAGEN sequences cluster around a mean of 50.08%
with moderate spread (STD 7.03%). These statistics underscore our model’s superior precision in
targeting a biologically ideal GC content.

Updated GC Content Distribution Across Models

GC Content (%)
o 2
g 3

5
8

Our Model Base Model RNAGEN

Figure 6: Violin plot of GC content distribution for sequences generated by Our Model, Base Model,
and RNAGEN. Our Model exhibits the tightest distribution around the optimal GC range.

MFE Analysis We analyzed both per-token MFE and overall normalized MFE to assess the
predicted thermodynamic stability of the generated RNA sequences.

Figure [7b[shows the per-token MFE distributions for Our Model and the Base T5 Model. Our Model
achieves a mean per-token MFE of —0.2992 (Std = 0.0729), which is substantially more negative
than the Base TS5 Model’s mean of —0.1411 (Std = 0.0650). This indicates that, on a per-token basis,
our model generates sequences predicted to be more stable. The distributions confirm that our tuned
model shifts the mean MFE further negative while maintaining a relatively tight spread.

Comparison of MFE Per-Token MFE Distribution
Our Model
6 —— BaseT5
Our Model ———36=3448——
5
Base T5 Model 2
o3
[}
2
RNAGEN —5=+350 1
0 L L L 1 L n
-50 —40 -30 -20 -10 0 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0
Normalized MFE (kcal/mol) MFE per Token
(a) Comparison of mean MFE (kcal/mol) for (b) Per-token MFE distributions for se-
RNA sequences. quences generated by Our Model (GRPO-

Tuned-T5) and the Base T5 Model.

Figure 7: (a) Mean MFE comparison across models. (b) Per-token MFE distributions. Our model
shows a clear shift towards more negative (more stable).

The overall MFE for sequences from all three models is compared in Figure[/al Our Model achieves
the most negative mean MFE (=30 + 14.4 kcal/mol), significantly outperforming the Base T5 Model
(=17 £ 2.1 kcal/mol) and RNAGEN (-5 + 3.5 kcal/mol). While Our Model has a higher standard
deviation for overall MFE compared to the Base T5 model, its mean MFE indicates a strong tendency
towards generating more stable structures.

4.4 Comparison of Model Performance

Finally, we present a consolidated comparison of the Base T5 model and Our Model (GRPO-Tuned
T5) based on two critical metrics: the Mean Composite Reward, which evaluates the overall reward-
based objective, and the Loss Values, which assess the alignment with the original ground truth
sequences.



Table 3: Comparison of Mean Composite Reward and Loss Values.

Metric Base T5S Model Our Model (GRPO-Tuned T5)
Mean Composite Reward 0.56 0.69
Loss Values 3.1664 / 1.1859 3.3045/1.2283

As shown in Table [3] Our Model achieves a higher mean composite reward, demonstrating improved
performance under the reinforcement learning objective. While the loss values of Our Model are
slightly higher than those of the Base TS Model, this increase is expected since GRPO optimization
does not explicitly minimize the supervised loss. Nevertheless, the moderate change in loss suggests
that the fine-tuning process preserves much of the learned distribution from the original supervised
training, while effectively shifting the model toward enhanced RNA design objectives.

In summary, the GRPO fine-tuning process significantly enhances the T5 model’s ability to generate
RNA sequences that are not only predicted to bind target proteins more effectively (as shown by
DeepCLIP scores) but also possess desirable nucleotide composition (GC content) and thermodynamic
stability (MFE), while largely retaining fidelity to the original generation task. The improvements
are evident both in mean performance and, for per-token MFE, in the distribution of sequence
characteristics.

5 Discussion

Our comparative analysis demonstrates that GRPO fine-tuning, guided by a composite reward
function, substantially improves the quality of protein-binding RNA sequences generated by a pre-
trained TS5 model. As shown in Table 3| the GRPO-enhanced model (Our Model) achieves a higher
mean composite reward compared to the Base TS Model, indicating more successful optimization.
This gain is driven by a more balanced and tightly controlled GC content (53.83 % * 2.40 % vs. 62.16
% *7.25 % for the Base Model and 50.08 % + 7.03 % for RNAGEN; Figure[6) and by improved
thermodynamic stability, as suggested by favorable shifts in MFE characteristics. The distribution of
normalized free energy values (Figure [7a) shows that Our Model consistently generates sequences
with stronger folding potential. Furthermore, the per-token MFE distribution (Figure reveals a
noticeable shift towards more stable structures relative to the Base Model. Importantly, the analysis
of loss values against ground truth indicates that these benefits were achieved without sacrificing
the model’s original language generation capabilities. Collectively, these results demonstrate that
our reinforcement learning agent is capable of generating RNA sequences that are both structurally
robust and compositionally suitable.

The success of this approach hinges on two key components. First, the binding classifier—trained on
high-confidence interactions from CLIPDB and shuffled negatives—provides a biologically grounded
reward signal. Second, Group Relative Policy Optimization, enhanced with KL-regularization and
hyperparameters fine-tuned via Optuna (Table[I)), ensures smooth and effective policy learning. The
observed rise and stabilization of composite rewards, along with declining reward variance over
training epochs (Figure ), demonstrate GRPO’s capability to guide the policy toward favorable
solutions while avoiding destabilizing shifts.

By weighting structural criteria more heavily than binding affinity (wgc = wyrr = 0.4 vs.
Wpinding = 0.2), our reward design emphasizes foldability and compositional constraints critical
for RNA function. The improved GC distribution—both in mean and notably lower deviation for
Our Model—and more negative, tighter MFE profiles (Figures [7b| and underscore the value
of this multi-objective formulation. In contrast, the Base Model—fine-tuned solely on supervised
data—remains biased toward excessively high GC content with substantial variability, while RNA-
GEN exhibits poor MFE scores and greater variance in GC content, with many values falling outside
the desired range and lacking consistency.

Limitations and Challenges

Despite these encouraging results, our study faces several limitations and challenges. First, the
reliance on an in silico protein—RNA binding classifier means that any inaccuracies or biases in its
outputs can misdirect the RL agent. Without experimental validation of binding affinity, the degree to
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which our generated sequences will translate into true biological activity remains uncertain. Second,
the reward weights were chosen heuristically; a more systematic approach—such as automated weight
optimization or multi-objective RL—could better balance binding versus structural objectives. Third,
achieving the right balance between exploration and exploitation during RL proved challenging.
While GRPO’s KL-penalty enhances stability, it may also limit the diversity of generated sequences.
Finally, the computational cost of fine-tuning a large transformer model with multiple rollouts per
update step constrains both the breadth of our experiments and the granularity of hyperparameter
searches.

Future Work

Future work will address these limitations by improving the biological fidelity and robustness of our
framework. We plan to enhance the binding classifier through integration of experimental binding
data and advanced architectures, thereby refining the primary reward signal. We will also explore
adaptive reward-weighting schemes and more sophisticated reward shaping strategies to dynamically
balance competing objectives. Alternative RL algorithms, such as proximal policy optimization
(PPO) or preference-based approaches, may offer further stability or diversity in sequence generation.
Crucially, we intend to validate our computationally designed RNA candidates in vitro to confirm
binding affinities and structural predictions. Finally, incorporating three-dimensional structural
information and leveraging co-evolutionary constraints could further improve the functional relevance
of generated sequences. Overall, these extensions will advance the integration of deep reinforcement
learning into biomolecular design workflows.

6 Conclusion

In this study, we successfully applied GRPO to enhance a T5-based encoder-decoder model for
generating RNA sequences that bind to specific protein targets. By developing a novel protein-RNA
binding classifier and integrating its predictions into a multi-component reward function considering
RNA GC content and Minimum Free Energy, we guided the RL agent towards producing sequences
with improved characteristics. Our findings indicate that the GRPO-enhanced model generates RNA
sequences with higher predicted binding scores and better structural properties compared to both the
initial fine-tuned model and a simpler baseline approach. This research highlights the promise of
leveraging advanced RL algorithms for biomolecular design and contributes a novel application of
GRPO in bioinformatics. Future work will focus on refining reward mechanisms, classifier accuracy,
and experimental validation.
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A Appendix A: Member Contributions

Each group member’s contributions to the project are detailed below:

* Yusuf Kesmen: Led the implementation and adaptation of the GRPO algorithm for the T5
model. Conducted hyperparameter tuning using Optuna and analyzed RL training dynamics.
Primary contributor to the technical sections of the manuscript (Methods, Results) and
overall technical lead.

+ Alpsencer Ozdemir: Developed and trained the protein-RNA binding classifier, including
data preparation (positive/negative samples, embedding generation). Designed and imple-
mented the individual components of the reward function (GC content, MFE). Developed
and evaluated the baseline model. Contributed to the Introduction and Related Work sections
of the manuscript.

* Yavuz Alp Sencer Oztiirk: Managed the initial fine-tuning of the base T5 model and the
creation/management of custom BPE tokenizers. Integrated various model components
and set up the computational environment and data pipelines. Coordinated the report and
presentation preparation, primary contributor to the Discussion, Conclusion, and Appendix
sections of the manuscript.

All members contributed to the conceptualization of the project, literature review, debugging, and
final report preparation.

B Appendix B: Code Overview
b3

File: inference.py

Listing 1: Code Snippet

import os

import torch

import RNA

import numpy as np

import matplotlib.pyplot as plt

from tqdm import tqdm

from transformers import TbForConditionalGeneration
from custom_tokenizer import get_tokenizer

# Paths to your three checkpoints and their short names

CKPT_DIRS = [

#

"/data6/alpsencer/reinforce_rna/grpo-project/results/epoch_01_step_000050",
#

"/data6/alpsencer/reinforce_rna/grpo-project/results/epoch_03_step_000150",
#

"/data6/sobhan/rllm/results/train/t5/run3_20240822-152114/checkpoints/checkpoint -

"/data6/alpsencer/reinforce_rna/grpo-project/results/epoch_03_step_000900"

]
MODEL_NAMES = ["step900"]

# Tokenizer files

PROTEIN_TOKENIZER_PATH =
"/data6/alpsencer/tokenizers/bpe_protein_1000_1024. json"

RNA_TOKENIZER_PATH =
"/data6/alpsencer/tokenizers/bpe_rna_1000_1024. json"

# Validation data
VALIDATION_PATH = "/data6/alpsencer/reinforce_rna/validation_rl.txt"
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26

# Generation parameters
VOCAB_SIZE = 1000
SEQ_SIZE = 1024
MAX_PROMPT_LENGTH = 1024
MAX_COMPLETION_LENGTH= 1024
NUM_RETURN_SEQUENCES = 1

TOP_P = 1.0
TEMPERATURE = 0.7
BEAM_SIZE =1

# Helper functions

def map_to_bjuz(rna_acgu_sequence):

38 return (rna_acgu_sequence.replace("A","b")

39 .replace("C","j")

40 .replace("U","u")

41 .replace("G","z"))

)

43 def map_to_acgu(rna_bjuz_sequence):

44 s = rna_bjuz_sequence.replace(" ", "")

45 return (s.replace("b","A")

46 .replace("j","C")

47 .replace("u","U")

48 .replace("z","G"))

49

5o def load_validation_data(filepath):

51 proteins, rnas = [], []

52 with open(filepath) as f:

53 for line in f:

54 line = line.strip()

55 if not line: continue

56 prot, rna = line.split(",",1)

57 proteins.append (prot)

58 rnas.append(rna)

59 return proteins, rnas

60

61 def calculate_gc_content (seq):

62 seq = seq.upper ()

63 gc = seq.count("G") + seq.count("C")

64 return (gc / len(seq)) * 100 if seq else O

65

66 def calculate_mfe(seq):

67 try:

68 _, mfe = RNA.fold(seq)

69 return mfe

70 except:

71 return None

72

73 def calculate_mfe_per_token(seq):

74 """Calculate MFE normalized by sequence length"""
75 mfe = calculate_mfe(seq)

76 if mfe is not None and seq:

77 return mfe / len(seq)

78 return None

79

s # Main evaluation loop

st def main():

82 os.makedirs("analysis_outputs_Q", exist_ok=True)
83 proteins, ground_truths = load_validation_data(VALIDATION_PATH)
84

85 results = {}

86 for ckpt, name in zip (CKPT_DIRS, MODEL_NAMES):
87 print (f"\nLoading model ’{name}’ from {ckptl}")
88 device = "cuda" if torch.cuda.is_available() else "cpu"
89 model =

T5ForConditionalGeneration.from_pretrained(ckpt).to(device)
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90
91
92
93
94
95

96

98
99
100
101
102

103
104
105
106
107
108
109
110
111
112

113

114

129

130
131
133
134

135

136
137
138

139
140
141
142
143
144
145
146
147

model.eval ()

# tokenizers

tok_p = get_tokenizer("bpe", VOCAB_SIZE, SEQ_SIZE,
tokenizer_path=PROTEIN_TOKENIZER_PATH)

tok_r = get_tokenizer("bpe", VOCAB_SIZE, SEQ_SIZE,
tokenizer_path=RNA_TOKENIZER_PATH)

tok_p.pad_token_id = tok_r.pad_token_id = 0

gc_vals, mfe_vals, loss_vals = []1, [1, []
mfe_per_token_vals = [] # Add list for MFE per token values

for prot, gt_acgu in tqdm(zip(proteins[:10],
ground_truths [:10]),
total=min (10, len(proteins)),
desc=name) :

# --- tokenize protein input ---

enc = tok_p.tokenize (prot)

ids = enc.ids[:MAX_PROMPT_LENGTH]

mask = enc.attention_mask[:MAX_PROMPT_LENGTH]

pad MAX_PROMPT_LENGTH - len(ids)
ids += [tok_p.pad_token_id]*pad
mask += [0]x*pad
inp = {
"input_ids": torch.tensor ([ids
],dtype=torch.long) .to(device),
"attention_mask":
torch.tensor ([mask],dtype=torch.long).to(device)
}

# --- generate RNA ---
gen_kwargs = {
"max_new_tokens": MAX_COMPLETION_LENGTH,
"num_return_sequences": NUM_RETURN_SEQUENCES,
"do_sample": BEAM_SIZE==1,
"top_p": TOP_P,
"temperature": TEMPERATURE,
"num_beams": BEAM_SIZE,
"early_stopping": BEAM_SIZE>1
}
with torch.no_grad():
out_ids = model.generate (x*inp, **gen_kwargs)
bjuz = tok_r.decode(out_ids) [0] if
isinstance (tok_r.decode(out_ids), list) else
tok_r.decode (out_ids)
gen_acgu = map_to_acgu(bjuz)

# --- GC & MFE ---

gc = calculate_gc_content (gen_acgu)

mfe = calculate_mfe(gen_acgu)

mfe_per_token = calculate_mfe_per_token(gen_acgu) #
Calculate MFE per token

gc_vals.append (gc)

mfe_vals.append(mfe if mfe is not None else np.nan)

mfe_per_token_vals.append(mfe_per_token if mfe_per_token
is not None else np.nan) # Add MFE per token

# --- loss on ground truth ---

gt_bjuz = map_to_bjuz(gt_acgu)

1bl = tok_r.tokenize(gt_bjuz).ids[:MAX_COMPLETION_LENGTH]
pad2 = MAX_COMPLETION_LENGTH - len(1lbl)

1bl += [tok_r.pad_token_id]*pad2

labels = torch.tensor ([1bl],dtype=torch.long).to(device)
labels[labels==tok_r.pad_token_id] = -100

with torch.no_grad():
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156
157
158
159

160

161

loss = model (¥*inp, labels=labels).loss.item()
loss_vals.append(loss)

# store

results [name] = {
"gc": gc_vals,
"mfe": mfe_vals,

"mfe_per_token": mfe_per_token_vals, # Add MFE per token
to results
"loss": loss_vals

# save raw data lists to txt
np.savetxt (f"analysis_outputs_2/gc_values_{namel}.txt",
gc_vals, fmt="7%.4f")
np.savetxt (f"analysis_outputs_2/mfe_values_{namel}.txt",
mfe_vals, fmt="%.4f")
np.savetxt (f"analysis_outputs_2/mfe_per_token_values_{namel}.txt",
mfe_per_token_vals, fmt="),.6f") # Save MFE per token
values
np.savetxt (f"analysis_outputs_2/loss_values_{name}.txt",loss_vals,fmt="7%.6f")

# summary table
with open("analysis_outputs_2/summary_metrics.txt","w") as f:
f.write("Model\tGC_mean\tGC_std\tMFE_mean\tMFE_std\tMFE_per_token_mean\tMFE_per_t
for name, m in results.items():
g, mf, mfpt, lo = np.array(m["gc"]), np.array(m["mfe"]),
np.array(m["mfe_per_token"]), np.array(m["loss"])
f.write(f"{name}\t"
f"{g.mean () : . 2fF\t{g.std () :.2£F\t"
f"{mf .mean () :.2f}\t{mf.std () :.2£F\t"
f"{mfpt.mean() :.6fI\t{mfpt.std():.6£F\t"
f"{lo.mean () :.4f}\t{lo.std():.4£F\n")
# plots
# 1) Violin plot of GC content
plt.figure(figsize=(8,5))

parts = plt.violinplot(

plt
plt
plt
plt
plt.
plt.

# 2)
plt.
for

plt
plt
plt.
plt
plt
plt.
plt.

# 3)
plt.
for

[results[n]["gc"] for n in MODEL_NAMES],
showmeans=True, showmedians=True)

.xticks ([1,2,3], MODEL_NAMES)
.ylabel ("GC content (%)")
.title ("GC content by model")
.grid (alpha=0.3)

savefig("analysis_outputs_2/gc_violin.png")
close ()

MFE distribution
figure(figsize=(8,5))
name in MODEL_NAMES:
plt.hist(results[name] ["mfe"], bins=30, alpha=0.5,
density=True, label=name)

.xlabel ("MFE (kcal/mol)")
.ylabel ("Density")

legend ()

.title ("MFE distributions™")
.grid (alpha=0.3)

savefig("analysis_outputs_2/mfe_dist.png")
close ()

Loss distribution
figure(figsize=(8,5))
name in MODEL_NAMES:
plt.hist(results[name]["loss"], bins=30, alpha=0.5,
density=True, label=name)
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plt.xlabel("Loss (NLL)")

plt.ylabel ("Density")

plt.legend ()

plt.title(" Ground truth loss distributions")
plt.grid(alpha=0.3)
plt.savefig("analysis_outputs_2/loss_dist.png")
plt.close ()

# 4) MFE per token distribution

plt.figure(figsize=(8,5))

for name in MODEL_NAMES:
plt.hist(results [name] ["mfe_per_token"], bins=30, alpha=0.5,

density=True, label=name)

plt.xlabel ("MFE per token (kcal/mol per nucleotide)")

plt.ylabel ("Density")

plt.legend ()

plt.title ("MFE per token distributions")

plt.grid(alpha=0.3)

plt.savefig("analysis_outputs_2/mfe_per_token_dist.png")

plt.close ()

print ("All metrics, plots and data have been saved under
./analysis_outputs_2/")
if __name__ == "__main__":
main ()

Directory: classifier/

File: classifier/binding_embedding_creator.py

Listing 2: Code Snippet

nun

Embedding generator for protein and RNAs
Last modified: 13.04.2025

Modified by: Alpsencer & Yusuf

TODO: organize the code if necessary

import torch

from transformers import TS5ForConditionalGeneration

from pathlib import Path

from tqdm import tqdm

from util.tokenizer import get_tokenizer # Update the path
import numpy as np # Add numpy for random split

from datasets import load_dataset
from copy import deepcopy

import pickle # Import pickle for incremental saving

MODEL_PATH =

"/data6/sobhan/rllm/results/train/t5/run3_20240822-152114/checkpoints/checkpoint -34980

SOURCE_TOKENIZER =
"/data6/alpsencer/tokenizers/bpe_protein_1000_1024. json"

RNA_TOKENIZER = "/data6/alpsencer/tokenizers/bpe_rna_1000_1024.json"
MAX_LEN = 32

# TRAIN_DATA = "/data6/sobhan/RLLM/dataset/rph/train_rp.txt"
TRAIN_DATA = "/data6/alpsencer/reinforce_rna/sample_100K.txt"
EVAL_DATA = "/data6/sobhan/RLLM/dataset/rph/eval_rp.txt"
PAIR_SAVE_DIR = "/data6/alpsencer/data/rllm_classifier_pairs"
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27 DATASET_NAME = "pairs_100K_eos"

2 BATCH_SIZE = 16

29 TRAIN_OUTPUT_FILENAME = f"{DATASET_NAME} _train.pkl" # Define output
filename with .pkl extension

30 TEST_OUTPUT_FILENAME = f"{DATASET_NAME} _test.pkl" # Define output
filename with .pkl extension

3. TRAIN_TEST_SPLIT = 0.95

33 def tokenize_dataset (sample, source_tokenizer, rna_tokenizer):

34 text = sample["text"]

35 # Basic error handling for malformed lines

36 try:

37 source, rna, pair = text.strip().split("$")
38 except ValueError:

39 # Return None or handle appropriately if lines might be
malformed

40 # For now, assume data is clean as per original code’s lack
of handling

41 # If errors occur, add more robust handling here.

42 # Example: return None and filter later

43 print (f"Warning: Skipping malformed line: {text.strip(}") #
Keep minimal warning if needed, or remove

44 return None

45

46

47 rna = rna.replace("A", "b").replace("C", "j").replace("U",

"u").replace("G", "z"

48 source = source.lower ()

49

50 source_tokenized = source_tokenizer.tokenize (source)

51 rna_tokenized = rna_tokenizer.tokenize (rna)

52

53 # replace the first padding token with eos token

54

55

56 # need to set these to -100 to calculate the loss properly

57 # rna_labels = [-100 if i == 0 else i for i in rna_tokenized.ids]

58

59 # return {

60 # "input_ids": source_tokenized.ids,

61 # "attention_mask": source_tokenized.attention_mask,

62 # "labels": rmna_labels,

63 # }

64 return {

65 "source_tokenized": source_tokenized,

66 "rna_tokenized": rna_tokenized,

67 "label": 1 if pair == "+" else O,

68 i

69

70

71 def get_datasets(args, source_tokenizer , rna_tokenizer,
iterable=True) :

72

73 # Get the dataset

74 dataset = load_dataset (

75 "text",

76 data_files=args.train_data,

77 split="train",

78 cache_dir="/data6/alpsencer/cache",
79 )

80

81 if iterable:

82 train_dataset = dataset.to_iterable_dataset ()
83 else:

84 train_dataset = dataset
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85

87
88
89
90
91
92

93

94
95
96
97
98
99

100

def

# # Filter dataset

filter_source_tokenizer = deepcopy(source_tokenizer)
filter_source_tokenizer.tokenizer.no_truncation ()
filter_rna_tokenizer = deepcopy(rna_tokenizer)
filter_rna_tokenizer.tokenizer.no_truncation ()

def _is_valid_sample(sample):
# Check for malformed lines first if tokenize_dataset can
return None
if sample is None or "text" not in sample:
return False

try:
source, rna, _ = sample["text"].strip().split("$")
return (
len(filter_source_tokenizer.tokenize (source).ids) <=
1024
and len(filter_rna_tokenizer.tokenize(rna).ids) <=
1024
)

except ValueError:
return False # Filter out malformed lines

filtered = train_dataset.filter(_is_valid_sample)

# # # Shuffle dataset
if iterable:

shuffled = filtered.shuffle(buffer_size=10000)
else:

shuffled = filtered.shuffle ()

# Tokenize dataset
tokenized = shuffled.map(
lambda sample: tokenize_dataset(sample, source_tokenizer,
rna_tokenizer)

)
# Add filtering step if tokenize_dataset returns None for errors
tokenized = tokenized.filter(lambda x: x is not None)

return tokenized

count_file_lines(file_path):
try:
with open(file_path, "r", encoding="utf-8", errors="ignore")
as file:

return sum(1l for in file)
except FileNotFoundError:

return 0 # Return O if file not found, avoids crash

# Import The encoder-decoder model
device = "cuda" if torch.cuda.is_available() else "cpu"
model = T5ForConditiona1Generation.from_pretrained(MUDEL_PATH) #

Update the model path

model.to(device)
model.eval() # Set model to evaluation mode

# Import the tokenizers
source_tokenizer = get_tokenizer(

tokenizer_name="bpe",
vocab_size=1000,

seq_size=1024,
tokenizer_path=SO0URCE_TOKENIZER,
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144 )

145 rna_tokenizer = get_tokenizer(

146 tokenizer_name="bpe", vocab_size=1000, seq_size=1024,
tokenizer_path=RNA_TOKENIZER

150 # Import the dataset, tokenize the data
151 class Args:

152 def __init__(self, train_data, eval_data):
153 self.train_data = train_data
154 self.eval_data = eval_data

157 dataset_args = Args (TRAIN_DATA, EVAL_DATA)

158 train_dataset = get_datasets(

159 dataset_args, source_tokenizer=source_tokenizer,
rna_tokenizer=rna_tokenizer

163 return {

164 "input_ids": source_tokenized.ids,

165 "attention_mask": source_tokenized.attention_mask,
166 "labels": rna_labels,

167}

70 print(model.config) # Original print statement

1
72 save_dir = Path(PAIR_SAVE_DIR)

73 # --- Ensure save directory exists ---

74 save_dir .mkdir (parents=True, exist_ok=True)

75 train_output_path = save_dir / TRAIN_OUTPUT_FILENAME
76  test_output_path = save_dir / TEST_OUTPUT_FILENAME

78 # Generate train/test indices before processing

79 total_samples = count_file_lines (TRAIN_DATA)

80 indices = np.arange(total_samples)

I np.random.seed(42) # Set seed for reproducibility
82 np.random.shuffle(indices)

83 train_size = int(TRAIN_TEST_SPLIT * total_samples)
184 train_indices = set(indices[:train_size])

186 # pair_list = [] # Removed: No longer accumulating in memory
157 print (type(train_dataset)) # Original print statement
188 batched_dataset = train_dataset.iter(batch_size=BATCH_SIZE)

190 file_length = count_file_lines (TRAIN_DATA)

91 # Use file_length for tqdm if reliable, otherwise might need
adjustment or removal

192 tqdm_total = (file_length // BATCH_SIZE + 1) if file_length > 0 else

None
193
194 current_index = 0 # Keep track of global index
195
196 # --- Open output file before the loop ---
197 with open(train_output_path, "wb") as train_outfile:
198 with open(test_output_path, "wb") as test_outfile:
199 # Freeze the model gradients and disable dropout etc.
200 with torch.inference_mode():
201 for tokenized_batch in tqdm(batched_dataset,
total=tqdm_tota1): # Use calculated total if available
202
203 protein_ids = [
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204 tokenized.ids for tokenized in
tokenized_batch["source_tokenized"]

205 ]

206 protein_attention = [

207 tokenized.attention_mask

208 for tokenized in

tokenized_batch["source_tokenized"]

209 ]

210

211 rna_ids = [tokenized.ids for tokenized in
tokenized_batch["rna_tokenized"]]

212 rna_attention = [

213 tokenized.attention_mask for tokenized in

tokenized_batch["rna_tokenized"]

214 ]

215

216 # --- Convert lists to tensors ---

217 protein_ids_tensor = torch.tensor(protein_ids,
dtype=torch.long) .to(device)

218 protein_attention_tensor =
torch.tensor(protein_attention,
dtype=torch.long) .to(device)

219 rna_ids_tensor = torch.tensor(rna_ids,
dtype=torch.long) .to(device)

220 rna_attention_tensor = torch.tensor(rna_attention,
dtype=torch.long) .to(device)

221

222 # Extract protein & rna embeddings

223

224 # Forward pass through the encoder

225 encoder_outputs = model.encoder (

226 input_ids=protein_ids_tensor,

227 attention_mask=protein_attention_tensor,

228 )

229 protein_hidden_states =
encoder_outputs.last_hidden_state # Encoder
embeddings

230

231 # Forward pass through the decoder

232 decoder_outputs = model.decoder(

233 input_ids=rna_ids_tensor,

234 attention_mask=rna_attention_tensor,

235 encoder_hidden_states=protein_hidden_states,

236 encoder_attention_mask=protein_attention_tensor,

# Pass encoder mask

237 output_hidden_states=True,

238 )

239 rna_hidden_states = decoder_outputs.last_hidden_state

240

241 # Protein embedding (Mean Pooling)

242 # Use attention mask directly for masking and length
calculation

243 protein_masks = protein_attention_tensor.to(device) #
Already on device

244 protein_hidden_masked = protein_hidden_states *
protein_masks.unsqueeze (-1)

245 protein_masked_sum = torch.sum(protein_hidden_masked,
dim=1)

246 protein_sequence_lengths = torch.sum(protein_masks,
dim=1, keepdim=True).clamp(min=1) # Avoid div by
zZero

247 protein_embeddings = protein_masked_sum /

protein_sequence_lengths
248
249
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# RNA embedding (Last non-padding token / EO0S-1like)

# Find the index of the last non-padding token using
the attention mask

rna_sequence_lengths_indices =
rna_attention_tensor.sum(dim=1) - 1 # Get last
index (0-based)

rna_sequence_lengths_indices =
rna_sequence_lengths_indices.clamp(min=0) #
Ensure index is not negative

# Gather the hidden state at the last token index for
each sequence in the batch
rna_embeddings = rna_hidden_states[
torch.arange (rna_hidden_states.size (0),
device=device), rna_sequence_lengths_indices

]

# Average embedding

#rna_masks = torch.stack(

# [

# (torch.tensor (tokenized.ids) != 0)

# for tokenized in
tokenized_batch["rna_tokenized"]

# ]

#) .to(device)

#rna_hidden_masked = rna_hidden_states x*

rna_masks.unsqueeze (dim=2)
#print (protein_hidden_masked [0])

#rna_masked_sum = torch.sum(rna_hidden_masked,
dim=1) .to(device)

#rna_sequence_lengths = torch.sum(rna_masks,
dim=1) .to(device)

#rna_embeddings = rna_masked_sum /

rna_sequence_lengths.unsqueeze (dim=1)

# --- Create list of pairs *for this batch* and write
incrementally ---

current_batch_labels = tokenized_batch["label"]

# Move tensors to CPU before pickling

protein_embeddings_cpu = protein_embeddings.cpu()

rna_embeddings_cpu = rna_embeddings.cpu()

# Process each sample in the batch
for i in range(len(current_batch_labels)):
pair_data = {

"protein": protein_embeddings_cpulil,
"rna": rna_embeddings_cpuli],
"label": current_batch_labels[i],
}
# Write to appropriate file based on pre-computed

split
if current_index in train_indices:

pickle.dump(pair_data, train_outfile)
else:

pickle.dump(pair_data, test_outfile)
current_index += 1

File: classifier/classifier.py

Listing 3: Code Snippet

Binding classifiers for protein and RNA embeddings
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Last modified: 24.02.2025
Modified by: Alpsencer & Yusuf

import torch
import torch.nn as nn
import torch.nn.init as init

# Define the MLP Classifier
# TODO: hyperparameters from yaml
# TODO: regressor or classifier

class MLPBindingClassifier (nn.Module):

def __init__(self, protein_dim, rna_dim, hidden_dims=[512, 256,

128] , dropout_rate=0.2):

super (MLPBindingClassifier, self).

_init__Q)

# self.protein_mean = protein_mean

# self .protein_std = protein_std

# self.rna_mean = rna_mean
# self.rna_std = rna_std

# Input dimension is the concatenated protein and RNA

embeddings

input_dim = protein_dim + rmna_dim

# Build the MLP layers
layers = []

# layers.append(nn.BatchNormld (num_features=input_dim))

prev_dim = input_dim

for hidden_dim in hidden_dims:

layers.append (nn.Linear (prev_dim, hidden_dim))

layers.append (nn.ReLU())

layers.append (nn.Dropout (p=dropout_rate))

prev_dim = hidden_dim

# Output layer (binary classification)

layers.append(nn.Linear (prev_dim, 1))
layers.append(nn.Sigmoid ())
self .model = nn.Sequential (xlayers)

def forward(self, protein_embedding,

# Concatenate the embeddings

rna_embedding) :

# protein_normalized = ( protein_embedding -
self .protein_mean ) / self.protein_std

# rna_normalized = ( rna_embedding - self.rna_mean) /

self.rna_std

combined = torch.cat((protein_embedding, rna_embedding),

dim=1)

return self.model (combined)

class ContrastiveBindingClassifier (nn.Module):

pass
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File: classifier/embedding_loader.py
Listing 4: Code Snippet

import torch

from torch.utils.data import Dataset, DatalLoader
import torch.nn.functional as F

import pickle

class ProteinRNAEmbeddingDataset (Dataset):
def __init__(self, dataset_path):

# self.data = torch.load(dataset_path)

# Load the dataset with pickle
self.data = []
with open(dataset_path, "rb") as f:
while True:
try:
self.data.append(pickle.load (£f))
except EOFError:

break
proteins = torch.stack([x["protein"] for x in self.datal)
rnas = torch.stack([x["rna"] for x in self.datal)

labels = torch.tensor([x["label"] for x in self.datal])

self .proteins_normalized = F.normalize(proteins, p=2, dim=-1)
self.rnas_normalized = F.normalize(rnas, p=2, dim=-1)
self.labels = labels

def __len__(self):
return len(self.data)

def __getitem__(self, idx):
item = self.datal[idx]
# protein = torch.tensor(item["protein"], dtype=torch.float32)
# rna = torch.tensor(item["rna"], dtype=torch.float32)
protein =
item["protein"].clone().detach() .requires_grad_(True).float ()
rna =
item["rna"].clone().detach().requires_grad_(True).float ()
label = torch.tensor(item["label"], dtype=torch.long)

return protein, rna, label

%

File: classifier/train_classifier.py

Listing 5: Code Snippet

nun

Train a classifier for binding score of protein and rna embeddings
Last modified: 13.04.2025
Modified by: Alpsencer & Yusuf

nnn

import torch

from torch.utils.data import Dataset, DatalLoader
from torch.optim import Adam

from torch.nn import BCELoss

24



11 from torch.optim.lr_scheduler import LinearLR
12 from tgqdm import tqdm
13 import wandb

15 from classifier import MLPBindingClassifier
16 from embedding_loader import ProteinRNAEmbeddingDataset

18 # Constants

19 TRAIN_DATA =
"/data6/alpsencer/data/rllm_classifier_pairs/pairs_100K_eos_train.pkl"

20 VALIDATION_DATA =
"/data6/alpsencer/data/rllm_classifier_pairs/pairs_100K_eos_test.pkl"

21 BATCH_SIZE = 64

22 LEARNING_RATE = 0.00001

23 WEIGHT_DECAY 0.01 # L2 regularization parameter

24 DROPOUT_RATE = 0.0 # Dropout rate for regularization

s NUM_EPOCHS = 1000

26 VALIDATION_EPOCHS = 5

27 WARMUP_EPOCHS = 10 # Number of epochs for warmup
28 WARMUP_START_FACTOR = 0.1 # Starting learning rate factor
29

30 # Initialize wandb

31 wandb.init (

32 project="rllm-binding-classifier",

3 config={

34 "learning_rate": LEARNING_RATE,

35 "weight_decay": WEIGHT_DECAY,

36 "dropout_rate": DROPOUT_RATE,

37 "batch_size": BATCH_SIZE,

38 "epochs": NUM_EPOCHS,

39 "validation_epochs": VALIDATION_EPOCHS,

40 "warmup_epochs": WARMUP_EPOCHS,

41 "warmup_start_factor": WARMUP_START_FACTOR,
42 }

Q )

45 # Load dataset and create DatalLoader
4 train_dataset = ProteinRNAEmbeddingDataset (TRAIN_DATA)
47 validation_dataset = ProteinRNAEmbeddingDataset (VALIDATION_DATA)

19 train_dataloader = Dataloader (train_dataset, batch_size=BATCH_SIZE,
shuffle=True, drop_last=True)

50 validation_dataloader = Dataloader(validation_dataset,
batch_size=BATCH_SIZE, shuffle=True, drop_last=True)

51
52 # Find embedding sizes

53 proteins, rnas, labels = next(iter(train_dataloader))

s4 protein_dim = proteins.shape[1]

55 rna_dim = rnas.shape[1]

56

57 # Initialize the model, optimizer, and loss function

ss device = "cuda" if torch.cuda.is_available() else "cpu"
59

0 model = MLPBindingClassifier(
61 protein_dim=protein_dim, rna_dim=rmna_dim, hidden_dims=[256, 64],
dropout_rate=DROPOUT_RATE

6 )

63

6« model.to(device)

65

66 optimizer = Adam(model.parameters(), 1lr=LEARNING_RATE,
weight_decay=WEIGHT_DECAY)

67 criterion = BCELoss() # Binary Cross-Entropy Loss for binary
classification

68
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92

93

# Create learning rate scheduler with linear warmup
total_steps = len(train_dataloader) * NUM_EPOCHS
warmup_steps = len(train_dataloader) * WARMUP_EPOCHS
scheduler = LinearLR(

optimizer,

start_factor=WARMUP_START_FACTOR,

end_factor=1.0,

total_iters=warmup_steps

# normalized_embedding = (embedding - stats["mean"]) / stats["std"]

# Training loop
for epoch in range (NUM_EPOCHS) :
print (f"Epoch: {epoch+1}")

model.train() # Set the model to training mode
running_loss = 0.0

for batch in tqdm(train_dataloader):
proteins, rnas, labels = batch

labels.unsqueeze_ (1) # unsqueeze to make labels 2D tensor

proteins, rnas, labels = proteins.to(device),
rnas.to(device), labels.to(device)

# Forward pass
outputs = model (proteins, rnas)
loss = criterion(outputs, labels.float())

# Zero the gradients
optimizer.zero_grad ()

# Backward pass and optimization
loss.backward ()
optimizer.step ()

# Step the scheduler
if epoch < WARMUP_EPOCHS:
scheduler.step ()

running_loss += loss.item()

# Log training loss and learning rate per epoch
epoch_loss = running_loss / len(train_dataloader)
current_lr = optimizer.param_groups[0]J[’1r’]
wandb.log ({

"train_loss": epoch_loss,

"learning_rate": current_lr,

"epoch": epoch + 1
b

print (f"Epoch [{epoch+1}/{NUM_EPOCHS}], Loss: {epoch_loss:

LR: {current_lr:.6f}")

if (epoch + 1) % VALIDATION_EPOCHS == O0:
model.eval ()
validation_loss = 0.0
total_predictions = 0
true_positives = 0
predicted_positives = 0
total_positives = 0

with torch.inference_mode():
for batch in tqdm(validation_dataloader):
proteins, rnas, labels = batch
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labels.unsqueeze_ (1)
proteins, rnas, labels = proteins.to(device),
rnas.to(device), labels.to(device)

outputs = model(proteins, rnas)
loss = criterion(outputs, labels.float())
validation_loss += loss.item()

# Convert outputs to binary predictions
predictions = (outputs > 0.5).float()

# Update metrics
total_predictions += len(predictions)

true_positives += ((predictions == 1) & (labels ==

1)) .sum() .item ()
predicted_positives += (predictions == 1).sum().item()
total_positives += (labels == 1).sum().item()

# Calculate final metrics

accuracy = true_positives / total_predictions if
total_predictions > 0 else O

precision = true_positives / (predicted_positives + 1e-8)
if predicted_positives > 0 else 0

recall = true_positives / (total_positives + 1e-8) if
total_positives > 0 else O

fl1_score = 2 * (precision * recall) / (precision + recall

+ 1le-8) if (precision + recall) > 0 else O

# Log validation metrics
val_loss = validation_loss / len(validation_dataloader)
if len(validation_dataloader) > 0 else O
wandb.log ({
"val_loss": val_loss,
"val_accuracy": accuracy,
"val_precision": precision,
"val_recall": recall,
"val_f1": f1_score,
"epoch": epoch + 1
i)

print (f"Validation Loss: {val_loss:.4f}")

print (f"Accuracy: {accuracy:.4f}, Precision:
{precision:.4f}, Recall: {recall:.4f}, F1 Score:
{f1_score:.4f}")

print ("Training complete!")
wandb.finish ()

*
Directory: classifier/util/
&

File: classifier/util/generate_background_seq.py

Listing 6: Code Snippet

import csv
import random
from tqdm import tqdm



6 # 1) Define file paths

7 #

g INPUT_CSV = "/data6/alpsencer/reinforce_rna/output.csv"

9 OUTPUT_CSV = "/data6/alpsencer/reinforce_rna/background_sequences.csv"
10

1 #

12 # 2) Function to generate a background sequence by shuffling the RNA
sequence
13 #

14 def generate_background(rna_seq):

15 rna_list = list(rna_seq)
16 random.shuffle(rna_list)
17 return "".join(rna_list)
18

19 #

20 # 3) Iteratively process the CSV file row by row
21 #

2 with open(INPUT_CSV, "r", newline="") as infile, open(OUTPUT_CSV,

"w", newline="") as outfile:
23 reader = csv.DictReader (infile)
24 writer = csv.DictWriter (outfile, fieldnames=reader.fieldnames)
25 writer.writeheader ()
26
27 # Process each row iteratively with a progress bar
28 for row in tqdm(reader, desc="Processing rows"):
29 original_rna = row["rna_sequence"]
30 bg_rna = generate_background(original_rna)
31 row["rna_sequence"] = bg_rna
32 row["pair"] = "-" # mark as background sequence
33 writer.writerow (row)

35 print ("Background sequences saved to:", OUTPUT_CSV)

&
File: classifier/util/generate_protein_input.py

Listing 7: Code Snippet

I # This will converr the protein_seqs csv file in the form that grpo
trainer can get properly (different protein inputs)

# and save it as protein_input.txt

import pandas as pd

# 1) Read your source CSV
6 df = pd.read_csv("protein_seqgs.csv")

8 # 2) Build each line as "sequence$prot_name"

9 lines = df.apply(lambda row: f"{row[’seq’]}${row[’prot_name’]}",
axis=1)

10

11 # 3) Write to a .txt file

2 with open("protein_input.txt", "w") as f:

13 for line in lines:

14 f.write(line + "\n")

15

16 print("Wrote", len(lines), "entries to protein_input.txt")
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File: classifier/util/sample_generate.py

Listing 8: Code Snippet

import csv
import random
from tqdm import tqdm

(O N

#
6 # 1) Define file paths and sample sizes
7 #
s POSITIVE_CSV =
"/data6/alpsencer/reinforce_rna/positive_sequences.csv"
9 BACKGROUND_CSV =
"/data6/alpsencer/reinforce_rna/background_sequences.csv"
10 MERGED_TXT = "/data6/alpsencer/reinforce_rna/sample_100K.txt"
11 NUM_SAMPLES_PER_FILE = 100000 # 50K rows per file
12

13 #
14 # 2) Generator function to stream rows with strand °’+’ from a file
15 #

16 def positive_rows_generator (file_path, limit):
17 nmnn
18 Yields rows from file_path where the strand is ’+’ until the

limit is reached.
19 nwnn

20 count = 0

21 with open(file_path, "r", newline="") as infile:
22 reader = csv.DictReader (infile, delimiter=",")
23 for row in reader:

24 if row["strand"] == "+":

25 yield row

26 count += 1

27 if count >= limit:

28 break

29

30 #

31 # 3) Collect rows from both CSV files without reading them entirely
into memory
2 #

35 # Process the positive CSV
36 for row in tqdm(positive_rows_generator (POSITIVE_CSV,
NUM_SAMPLES_PER_FILE),

37 desc="Processing positive CSV"):
38 merged_rows . append ({

39 "protein_seq": row["protein_seq"],

40 "rna_seq": row["rna_sequence"],

41 "pair": row["pair"]

42 i)

4 # Process the background CSV
45 for row in tqdm(positive_rows_generator (BACKGROUND_CSV,
NUM_SAMPLES_PER_FILE),

46 desc="Processing background CSV"):
47 merged_rows . append ({
48 "protein_seq": row["protein_seq"],

29



49 "rna_seq": row["rna_sequence"],
50 "pair": row["pair"]

b

53 #

# 4) Shuffle the merged rows randomly
5 #

[T
B

random.shuffle (merged_rows)

[V Y
N

#

=

59 # 5) Write the shuffled rows to a TXT file using ’$’ as the delimiter
60 #

61 with open(MERGED_TXT, "w", newline="") as outfile:

62 fieldnames = ["protein_seq", "rna_seq", "pair"]

63 writer = csv.DictWriter (outfile, fieldnames=fieldnames,
delimiter="¢")

64 writer.writeheader ()

65 for row in merged_rows:

66 writer .writerow (row)

67

68 print(f"Merged and shuffled sample TXT created with
{NUM_SAMPLES_PER_FILE * 2} rows using ’$’ as delimiter:",
MERGED_TXT)

®
File: classifier/util/tokenizer.py

Listing 9: Code Snippet

import json
import os
import numpy as np

6 from tokenizers import Tokenizer

7 from tokenizers.models import BPE

8 from tokenizers.trainers import BpeTraimner

9 from tokenizers.pre_tokenizers import Bytelevel

10 from tokenizers.processors import TemplateProcessing

11 from tokenizers.normalizers import Sequence, Lowercase

13 import torch

16 class BpeTokenizer:

17 def __init__(self, seq_size, vocab_size):

18 self.tokenizer = Tokenizer (BPE())

19 self.tokenizer .normalizer = Sequence ([Lowercase()])
20 self .tokenizer.pre_tokenizer =

ByteLevel (add_prefix_space=False)

2 self.tokenizer.enable_padding(max_length=seq_size,
direction=’right’)
self .tokenizer.enable_truncation(max_length=seq_size)

25 self .special_tokens = {

26 "pad": {"id": 0, "token": "<pad>"},
27 "eos": {"id"Z 1, "token": Il</s>l|},
28 "unk": {"id": 2, "token": "<unk>"},

30



32 self.special_tokens_list = [None] * len(self.special_tokens)
33 for token_dict in self.special_tokens.values():
34 self.special_tokens_list[token_dict["id"]] =

token_dict ["token"]

36 self.tokenizer.post_processor = TemplateProcessing(
37 single=f"$A {self.special_tokens[’eos’][’token’]}",
38 special_tokens=[

39 (self.special_tokens["eos"]["token"],
self.special_tokens["eos"]["id"]),

40 1,
41 )
42
43 self.trainer = BpeTrainer (
44 vocab_size=vocab_size,
45 special_tokens=self.special_tokens_list,
46 show_progress=True
47 )
48
49 def train_tokenizer (self, train_data, which=True):
50 def iterator (data, which):
51 for sequence_item in data: # Renamed sequence to
sequence_item
52 text = sequence_item[’text’] # Renamed sequence to
sequence_item
53 mol, rna = text.strip().split(’$’)
54 if which:
55 yield mol
56 else:
57 yield rmna
58 self.tokenizer.train_from_iterator (iterator (data=train_data,
which=which), trainer=self.trainer)
59 self.add_unk_id ()

60
61 def train_from_files(self, data_files: str):

62 self.tokenizer.train(files=[data_files], trainer=self.trainer)
63 self.add_unk_id ()

64

65 def add_unk_id(self):

66 tokenizer_json = json.loads(self.tokenizer.to_str())

67 tokenizer_json["model"]["unk_id"] =
self.special_tokens["unk"]["id"]

68 self.tokenizer =

Tokenizer.from_str (json.dumps (tokenizer_json))
69

70 def save(self, path: str, name: str):
71 if not os.path.exists(path):
72 os.makedirs (path)

73 self.tokenizer.save(os.path. join(path, f"{name}. json"))
74

75 def load(self, path: str):

76 self.tokenizer = Tokenizer.from_file(path)

77

78 def tokenize (self, sequence_to_tokenize): # Renamed sequence to
sequence_to_tokenize

79 # print (sequence_to_tokenize)

80 return self.tokenizer.encode(sequence_to_tokenize)

81

82 def decode(self, sequence_to_decode): # Renamed sequence to
sequence_to_decode

83 # print(sequence_to_decode)

84 if isinstance(sequence_to_decode, torch.Tensor) :
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85 sequence_to_decode =
sequence_to_decode.detach().cpu() .numpy () .astype(dtype=np.int64)

86 # decode method of huggingface tokenizers usually decodes a
single sequence of ids,

87 # or a batch if batch_decode is used. The original code here
implies it might get a list of lists.

88 # However , self.tokenizer.decode expects a list of ints
(single sequence) or a string.

89 # If sequence_to_decode is already a list of token IDs (e.g.,

from model.generate), this is correct.

90 # If it’s a list of sequences (list of 1list of IDs), it would
need a loop or batch_decode.

91 # The custom_tokenizer.py in grpo-trainer has a different
decode for list of sequences.

92 # Assuming this one is for a single sequence.

93 return self.tokenizer.decode(sequence_to_decode)

94

95 def encode(self, tokenized_list): # Renamed tokenized to
tokenized_list
96 return [self.tokenizer.encode(seq) for seq in tokenized_list]

97

98

9 def get_tokenizer(tokenizer_name:str, vocab_size:int, seq_size:int,
tokenizer_path:str=None):

100 # Choose tokenizer

101 if tokenizer_name=="bpe":

102 my_tokenizer = BpeTokenizer(vocab_size=vocab_size,
seq_size=seq_size)

103 else:

104 raise NotImplementedError

105

106 # Load pre-trained tokenizer or train tokenizer

107 if tokenizer_path:

108 my_tokenizer.load(tokenizer_path)

109

110 if vocab_size != my_tokenizer.tokenizer.get_vocab_size():

111 assert "There is a conflict Tokenizer’s vocab size and
arguments’"
112

13 return my_tokenizer

Directory: grpo-trainer/
File: grpo-trainer/config.py

Listing 10: Code Snippet

| MODEL_PATH =
"/data6/sobhan/rllm/results/train/t5/run3_20240822-152114/checkpoints/checkpoint -34980
PROTEIN_TOKENIZER =
"/data6/alpsencer/tokenizers/bpe_protein_1000_1024. json"
3 RNA_TOKENIZER = "/data6/alpsencer/tokenizers/bpe_rna_1000_1024. json"

S}

5 TRAIN_DATA "/data6/alpsencer/reinforce_rna/protein_input.txt"
6 EVAL_DATA = "/data6/alpsencer/reinforce_rna/validation_rl.txt"

s MAX_LENGTH = 1024

9 VOCAB_SIZE = 1000

10 BATCH_SIZE = 16

11 LEARNING_RATE = 1le-5

12 NUM_TRAIN_EPOCHS = 3

15 GRADIENT_ACCUMULATION_STEPS = 4
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29

# FREEZE_ENCODER
training

True # Whether to freeze the encoder during

GC_CONTENT_MIN 0.4 # Minimum acceptable GC content
GC_CONTENT_MAX = 0.6 # Maximum acceptable GC content
BINDING_AFFINITY_WEIGHT = 0.2 # Weight for binding affinity reward
GC_CONTENT_WEIGHT = 0.4 # Weight for GC content reward

MFE_WEIGHT = 0.4 # Weight for MFE reward

NUM_GENERATIONS = 8 # Number of generations per prompt

MAX_PROMPT_LENGTH = 1024 # Maximum length of the prompt

MAX_COMPLETION_LENGTH = 256 # Maximum length of the generated
completion

BETA = 0.04 # KL coefficient
EPSILON = 0.1 # Epsilon value for clipping
MU = 5

WANDB_PROJECT = "rna-protein-grpo"

File: grpo-trainer/custom_tokenizer.py

Listing 11: Code Snippet

import json
import os
import numpy as np

from tokenizers import Tokenizer

from tokenizers.models import BPE

from tokenizers.trainers import BpeTrainer

from tokenizers.pre_tokenizers import ByteLevel

from tokenizers.processors import TemplateProcessing
from tokenizers.normalizers import Sequence, Lowercase

import torch

class BpeTokenizer:
def __init__(self, seq_size, vocab_size):
self.tokenizer = Tokenizer (BPE())
self .tokenizer.normalizer = Sequence ([Lowercase()])
self .tokenizer.pre_tokenizer =
ByteLevel (add_prefix_space=False)

self .tokenizer.enable_padding(max_length=seq_size,
direction=’right’)
self .tokenizer.enable_truncation(max_length=seq_size)

self.special_tokens = {
"pad": {"id": 0, "token": "<pad>"},
"eos": {"id": 1, "token": "</s>"},
"unk": {"id": 2, "token": "<unk>"},
}
self.special_tokens_list = [None] #* len(self.special_tokens)

for token_dict in self.special_tokens.values():
self.special_tokens_list[token_dict["id"]] =
token_dict["token"]

self.tokenizer.post_processor = TemplateProcessing(
single=f"$A {self.special_tokens[’eos’][’token’]}",
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38 special_tokens=[
39 (self.special_tokens["eos"]["token"],
self.special_tokens["eos"]["id"]),

3

yield rmna
self.tokenizer.train_from_iterator (iterator (data=train_data,
which_mol=which), trainer=self.trainer) # Pass which as
which_mol
59 self.add_unk_id ()
60
61 def train_from_files(self, data_files: str):
62 self.tokenizer.train(files=[data_files], trainer=self.trainer)
63 self.add_unk_id ()
64

40 1,

41 )

42

43 self.trainer = BpeTrainer (

44 vocab_size=vocab_size,

45 special_tokens=self.special_tokens_list,

46 show_progress=True

47 )

48

49 def train_tokenizer (self, train_data, which=True):

50 def iterator(data, which_mol): # Renamed which to which_mol

51 for sequence_item in data: # Renamed sequence to
sequence_item

52 text = sequence_item[’text’] # Renamed sequence to

sequence_item

53 mol, rna = text.strip().split(’$’)

54 if which_mol: # Use which_mol

55 yield mol

56 else:

5

5

&

65 def add_unk_id(self):
66 tokenizer_json = json.loads(self.tokenizer.to_str())
67 tokenizer_json["model"]["unk_id"] =
self .special_tokens["unk"]["id"]
68 self.tokenizer =

Tokenizer.from_str (json.dumps (tokenizer_json))
69
70 def save(self, path: str, name: str):

71 if not os.path.exists(path):

72 os.makedirs (path)

73 self.tokenizer.save(os.path. join(path, f"{namel}.json"))

74

75 def load(self, path: str):

76 self.tokenizer = Tokenizer.from_file(path)

77

78 def tokenize(self, sequence_to_tokenize): # Renamed sequence to

sequence_to_tokenize
79 # print(sequence_to_tokenize)

80 return self.tokenizer.encode(sequence_to_tokenize)

8

82 def decode (self, sequences_to_decode): # Renamed sequences to

sequences_to_decode

83 # print (sequences_to_decode)

84 if isinstance(sequences_to_decode, torch.Tensor):

85 sequences_to_decode =

sequences_to_decode.detach().cpu() .numpy () .astype(dtype=np.int64)

86 # This decode is meant to handle a batch of sequences (list
of list of IDs or tensor)

87 # and return a list of decoded strings.

88 return [self.tokenizer.decode(seq) for seq in

sequences_to_decode]
89
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20

23
24
25
26
27
28

def encode(self, tokenized_list): # Renamed tokenized to
tokenized_list
return [self.tokenizer.encode(seq) for seq in tokenized_list]

def get_tokenizer(tokenizer_name:str, vocab_size:int, seq_size:int,
tokenizer_path:str=None):
# Choose tokenizer
if tokenizer_name=="bpe":
my_tokenizer = BpeTokenizer(vocab_size=vocab_size,
seq_size=seq_size)
else:
raise NotImplementedError

# Load pre-trained tokenizer or train tokenizer
if tokenizer_path:
my_tokenizer.load(tokenizer_path)

if vocab_size != my_tokenizer.tokenizer.get_vocab_size():
assert "There is a conflict Tokenizer’s vocab size and

arguments’"

return my_tokenizer

File: grpo-trainer/hyperparameter_tuning.py

Listing 12: Code Snippet

import optuna

import wandb

import sys

import copy

import torch

from pathlib import Path

# Add the project root to Python path to import from sibling
directories

project_root = Path(__file__).resolve().parent # Use resolve() for
robustness

sys.path.append (str(project_root))

from config import (
LEARNING_RATE, BETA, EPSILON, MU,
BINDING_AFFINITY_WEIGHT, GC_CONTENT_WEIGHT, MFE_WEIGHT,
NUM_GENERATIONS, TOP_P, TEMPERATURE

HoH R O H R

)
rom main import ProteinRNAGRPOTainer # Assuming main.py is in the
same dir (project_root)

# def run_hyperparameter_tuning(model, tok_p, tok_r, train_envs,
eval_envs, config_obj, n_trials=20): # Renamed config to
config_obj

def run_hyperparameter_tuning(model, tok_p, tok_r, train_envs,
eval_envs, tuning_config, n_trials=20): # Renamed config_obj to
tuning_config
# Save the initial state of the model to reset before each trial
base_model_state = copy.deepcopy(model.state_dict())

def objective(trial):
try:
# Reset the model to the base state before each trial
model.load_state_dict(base_model_state)
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39
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58

59

60

62
63
64
65
66
67

68
69
70
71

73
74

# Reset optimizer state by creating a new optimizer
instance

# The optimizer is created within ProteinRNAGRPOTainer,
so this might not be strictly necessary here

# if the trainer re-initializes its optimizer or if model
reset is enough.

# However , explicit re-creation ensures no stale
optimizer state.

# optimizer = torch.optim.AdamW (model.parameters (),
lr=tuning_config.learning_rate) # Use tuning_config

# Define hyperparameter search space for only mu, beta,
and epsilon

beta_val = trial.suggest_float(’beta’, 0.01, 0.1) #
Renamed beta to beta_val

epsilon_val = trial.suggest_float(’epsilon’, 0.05, 0.2) #
Renamed epsilon to epsilon_val

mu_val = trial.suggest_int(’mu’, 3, 8) # Renamed mu to
mu_val

# Initialize wandb run with the trial parameters
current_run = wandb.init( # Renamed run to current_run
project="rna-protein-grpo", # 0Or use
tuning_config.WANDB_PROJECT if defined
name=f"trial_{trial.numberl}",
config=q
’beta’: beta_val,
’epsilon’: epsilon_val,

’mu’: mu_val,

1,

reinit=True # Allow multiple runs in the same process
)
# Update config parameters FOR THIS TRIAL
# The ProteinRNAGRPOTainer __init__ takes a config object.
# We need to pass these tuned values to it.
# One way 1is to create a new config object for each trial

or modify a copy.

trial_config = copy.deepcopy(tuning_config) # Work on a
copy

# These attributes (BETA, EPSILON, MU) need to be
accessible by ProteinRNAGRPOTainer

# If ProteinRNAGRPOTainer reads them from the global
’config’ module, then we’d set config.BETA

# If ProteinRNAGRPOTainer reads them from its
self .config_obj, then we set them on trial_config.

# Assuming ProteinRNAGRPOTainer uses its
self.config_obj.BETA etc.

trial_config.BETA = beta_val

trial_config.EPSILON = epsilon_val

trial_config.MU = mu_val

# Run training

trainer = ProteinRNAGRPOTainer (model, tok_p, tok_r,
train_envs, eval_envs, trial_config) # Pass
trial_config

trainer.train(epochs=1) # Run for 1 epoch during tuning

# Get the final reward as the objective value
# Check if summary is available and contains the key
final_reward = 0
if current_run and current_run.summary:
final_reward =
current_run.summary.get (’reward/mean’, 0)
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# End wandb run properly
if wandb.run is not None: # Check if a run is active
wandb.finish ()

return final_reward

except Exception as e:

print (£"Trial failed with error: {str(e)}")

# Make sure to finish the wandb run even if there’s an
error

if wandb.run is not None:
wandb.finish ()

# Return a very low reward to indicate failure

return float(’-inf?’)

study = optuna.create_study(direction=’maximize’)
study.optimize (objective, n_trials=n_trials)

print ("Best trial:")
best_trial_obj = study.best_trial # Renamed trial to
best_trial_obj

print (" Value: ", best_trial_obj.value)

print (" Params: ")

for key, value in best_trial_obj.params.items():
print (£" {key}: {valuel}")

# Restore the model to the initial base state (not necessarily
best params state)

# Or, if you want to set model to best params, you’d need to
re-run with best_params.

model.load_state_dict (base_model_state)

return study.best_params

File: grpo-trainer/main.py

Listing 13: Code Snippet

import argparse

import os

import random

import torch

import numpy as np

from transformers import Tb5ForConditionalGeneration,
PreTrainedTokenizerFast

# from trl import GRPOConfig # GRPOConfig from trl is for a different
GRPO setup. We use a custom one.

from reward_functions import rewarder

import config as global_config_module # Use an alias for the global
config module

from custom_tokenizer import get_tokenizer

# from torch.nn.functional import log_softmax # Not directly used,
F.log_softmax is used

import copy # Already imported
import torch.nn.functional as F

# from config import EPSILON, MU, BETA # These will be taken from
global_config_module or trainer’s config object
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20 import wandb
21 import multiprocessing as mp
22 from functools import partial

24 # wandb.init(project="protein-rna-grpo", name="grpo-run") # Init
should be done once, ideally in main or controlled per run

2% # --- Define a simple config class for our GRPO Trainer ---
27 # This replaces the direct use of trl.GRPOConfig for a custom setup
28 class CustomGRPOConfig:

29 def __init__(self, x*kwargs):

30 self .output_dir = "./results"

31 self.learning_rate = le-5

32 self .max_prompt_length = 1024

33 self .max_completion_length = 256

34 self .num_generations = 8 # Number of generations per prompt
35 self.top_p = 1.0

36 self.temperature = 1.0

37 self .max_grad_norm = 1.0

39 # GRPO specific, potentially tuned

40 self .BETA = global_config_module.BETA # Default from global
config

41 self .EPSILON = global_config_module.EPSILON # Default from
global config

42 self .MU = global_config_module.MU # Default from global config

43

44 # Update with any provided kwargs

45 for key, value in kwargs.items():

46 setattr(self, key, value)

47

4 # --- End simple config class ---

I def generate_with_log_probs(
2 model_obj: TSForConditionalGeneration, # Renamed model to

model_obj
53 input_ids: torch.Tensor,
54 attention_mask: torch.Tensor,
55 num_return_sequences: int,
56 max_new_tokens: int,
57 top_p: float,
58 temperature: float,
59 ) -> tuple[torch.Tensor, torch.Tensor]:

60 nnn

61 1) Sample N sequences with model_obj.generate (still under

no-grad)
62 2) Re-run the model_obj forward pass on those sequences to obtain
63 token-wise log-probs *x*xwith gradient**.
64 Returns:
65 sequences (N, T) generated token ids (without the start
token)
66 log_probs (N, T) log-probs that require grad
67 nmnn
68 device = input_ids.device
69
70 # ---- 1) sampling (no grad)
71 with torch.no_grad():
72 gen_out = model_obj.generate(
73 input_ids=input_ids,
74 attention_mask=attention_mask,
75 max_new_tokens=max_new_tokens,
76 do_sample=True,
77 top_p=top_p,
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def

temperature=temperature,
num_return_sequences=num_return_sequences,
return_dict_in_generate=True,

)
# gen_out.sequences shape: (N, 1 + T) (extra decoder-start
token)
full_sequences = gen_out.sequences
sequences = full_sequences[:, 1:] # drop start token
(v, T)
N, T = sequences.shape
# ---- 2) compute log-probs with grad
# repeat the encoder prompt N times (because batch == 1)
enc_input_ids = input_ids.repeat_interleave (N, dim=0)
enc_attention_mask = attention_mask.repeat_interleave (N, dim=0)

# decoder_input_ids are everything *before* each position

# prepend the decoder-start token id first

start_tok = model_obj.config.decoder_start_token_id

start_col = torch.full((N, 1), start_tok, dtype=torch.long,
device=device)

decoder_input_ids = torch.cat([start_col, sequences[:, :-1]],
dim=1) # (N, T)

outputs = model_obj(
input_ids=enc_input_ids,
attention_mask=enc_attention_mask,
decoder_input_ids=decoder_input_ids,

)

logits = outputs.logits # (N, T, V)

log_probs_tensor = torch.log_softmax(logits, dim=-1) # Renamed
log_probs to log_probs_tensor (N, T, V)

# pick the prob of the *actual* generated token at each step

tok_ids = sequences.unsqueeze (-1) # (N, T, 1)
log_probs_tensor = log_probs_tensor.gather (-1,
tok_ids) .squeeze(-1) # (N, T) requires grad

return sequences, log_probs_tensor

process_tokens_args_tuple(args_tuple): # Renamed args to

args_tuple to avoid conflict
nnn

Helper function to process tokens for a single sequence, takes a
tuple for pool.map

nnn

i, t, rna_ids, rna_str_list, protein_str_val, pad_token_id,

eos_token_id = args_tuple # Unpack tuple, rna ->
rna_str_list, protein -> protein_str_val
if (rna_ids[i, t] == pad_token_id or rmna_ids[i, t] ==

eos_token_id):
return t, 0.0

# Build the text up to this token

# rna_str_list[i] is a list of characters/tokens for the i-th
sequence

text = "".join(rna_str_list[i][:t+1])

reward_val = rewarder (text, protein_str_val) # Renamed reward to
reward_val

return t, reward_val
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129 def calculate_reward(

130 rna_ids: torch.Tensor,

131 rna_decoded_str_list: list[list[str]], # rna is now list of list
of chars/tokens for each seq in batch

132 protein_ids: torch.Tensor, # protein_ids not directly used here
but good for context

133 protein_str_val: str, # protein is now a single string for the
batch

134 pad_token_id: int = O,

135 eos_token_id: int = 1

13 ) -> torch.Tensor:
137 nn

138 sequences: (N, T) token IDs for generated RNAs

139 rna_decoded_str_list: (N, list_of_chars_at_t) decoded RNA strings
(ACGU format)

140 protein_str_val: the source protein string (same for all N if
batch_size=1)

141 returns: (N, T) rewards for each prefix ending at t,

142 where rewarder (text, protein_str_val) is called.

143 nmnn

144 device = rna_ids.device # Keep rewards on the original device if
possible, or move later

145 # rna_ids_cpu = rna_ids.to("cpu") # Move to CPU if
multiprocessing requires it (often does)

146 # protein_ids_cpu = protein_ids.to("cpu") # Not used in

process_tokens_args_tuple directly

148 N, T = rna_ids.size()
149 rewards_tensor = torch.zeros(N, T, device=device) # Renamed
rewards to rewards_tensor

151 # Create a pool of workers

152 # Using try-finally to ensure pool is closed

153 pool = None

154 try:

155 # num_workers = mp.cpu_count() # Can be too many, limit if
needed

156 num_workers = min(mp.cpu_count(), 4) # Example limit

157 pool = mp.Pool(processes=num_workers)

158

159 for i in range(N):

160 # Prepare arguments for each token position in this

sequence

161 # Pass rna_ids (on CPU if needed by pool),
rna_decoded_str_list (Python list), protein_str_val
(Python str)

162 token_args_list = [(i, t, rna_ids, rna_decoded_str_list,
protein_str_val, pad_token_id, eos_token_id)

163 for t in range(T)]

164

165 # Process tokens in parallel

166 results = pool.map(process_tokens_args_tuple,

token_args_list)
167

168 # Combine results for this sequence

169 for t_res, reward_val_res in results: # Renamed t, reward
to t_res, reward_val_res

170 rewards_tensor[i, t_res] = reward_val_res

171 finally:

172 if pool:

173 pool.close ()

174 pool. join ()

175

176 return rewards_tensor

177
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178
179 def calculate_advantage (rewards: torch.Tensor, eps: float = 1e-8) ->
torch.Tensor:

180 nnn

181 Normalize advantages per time-step (column), ignoring padded
values.

182 rewards: (N, T) tensor of rewards, where padded values are O

183 returns: (N, T) tensor of normalized advantages

184 nmnn

185 # Create a mask for non-padded values (assuming padding is 0)

186 mask = (rewards != 0).float()

187

188 # Calculate mean only over non-padded values

189 sum_rewards = (rewards * mask).sum(dim=0, keepdim=True) # (1, T)

190 count = mask.sum(dim=0, keepdim=True).clamp(min=eps) # Avoid
division by zero if count is O

191 mean = sum_rewards / count # (1, T)

192

193 # Center the rewards

194 centered = rewards - mean # (N, T)

195

196 # Calculate std only over non-padded values

197 squared_diff = (centered * mask) **x 2 # (N, T)

198 sum_squared_diff = squared_diff.sum(dim=0, keepdim=True) # (1, T)

199 std = torch.sqrt(sum_squared_diff / count ) # (1, T) # count
already has eps

200

201 # Normalize and apply mask to ensure padded values remain O

202 advantages = (centered / (std + eps)) * mask # Add eps to std for
stability
203 return advantages

204
205

206 class ProteinRNAEnvironment:

207 nmmnn

208 Environment wrapper for ProteinRNA, using tokenizer.tokenize ()
209 (returns .ids and .attention_mask).

210 nmnn

211 def __init__(self, protein: str, rna: str,

212 protein_tokenizer, rna_tokenizer,

213 max_input_length: int, max_output_length: int) :

214 self .protein_str = protein # Renamed protein to protein_str
215 self.rna_str = rna # Renamed rna to rna_str

216 self .p_tok = protein_tokenizer

217 self.r_tok = rna_tokenizer

218 self .max_in = max_input_length

219 self .max_out = max_output_length

220

221 # Store pad token id for convenience

222 self .p_tok_pad_id = self.p_tok.tokenizer.pad_token_id if

hasattr(self.p_tok, ’tokenizer’) and

hasattr(self.p_tok.tokenizer, ’pad_token_id’) else O
223 self . r_tok_pad_id = self.r_tok.tokenizer.pad_token_id if

hasattr(self.r_tok, ’tokenizer’) and

hasattr (self.r_tok.tokenizer, ’pad_token_id’) else O
224

225

226 def get_prompt_inputs(self):

227 # 1) Tokenize protein prompt

228 tok = self.p_tok.tokenize(self.protein_str)
229 ids = tok.ids[:self.max_in]

230 mask = tok.attention_mask[:self.max_in]

231

232 # 2) Pad out to max_in

233 pad_len = self.max_in - len(ids)
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234 if pad_len > O:
235 ids = ids + [self.p_tok_pad_id] * pad_len # Use stored
pad_id

236 mask = mask + [0] * pad_len

237

238 # 3) Wrap in batch dim

239 input_ids = torch.tensor ([ids], dtype=torch.long)

240 attention_mask = torch.tensor ([mask], dtype=torch.long)

241 return input_ids, attention_mask

242

243 def get_labels(self):

244 # 1) Tokenize target RNA (convert to bjuz first)

245 rna_bjuz = self.rna_str.replace("A", "b").replace("C",
"j").replace("U", "u").replace("G", "z").replace(" u, Illl)

246 tok = self.r_tok.tokenize(rna_bjuz)

247 ids = tok.ids[:self.max_out]

248

249 # Labels for T5 are usually shifted, and padded tokens are
-100

250 # The T5 model itself handles shifting if decoder_input_ids
are not provided with labels.

251 # If we are providing labels for loss computation, they
should be the target tokens.

2 # Padded tokens in labels should be -100.

[
@

>

# Pad labels to max_out length
pad_len = self.max_out - len(ids)
if pad_len > O:
ids = ids + [self.r_tok_pad_id] * pad_len # Pad with
actual pad token id first

<

=N

[ I R SR SR
' [

(Y
3

9 labels_tensor = torch.tensor ([ids], dtype=torch.long) #
Renamed labels to labels_tensor

260 labels_tensor [labels_tensor == self.r_tok_pad_id] = -100 #

Replace padding with -100 for loss calculation

261

262 return labels_tensor

263

264

265 class ProteinRNAGRPOTainer:

266 def __init__(self, model_obj, tokenizer_p, tokenizer_r,

train_envs_list, eval_envs_list, config_obj_trainer): #
Renamed params

267 self .model = model_obj # Renamed

268 self .tok_p = tokenizer_p

269 self.tok_r = tokenizer_r

270 self.train_envs = train_envs_list # Renamed

271 self.eval_envs = eval_envs_list # Renamed

272 self .config = config_obj_trainer # Renamed
273

274

275 # make a frozen reference policy ( _ref )

276 self.ref_model = copy.deepcopy(self.model).eval ()
277 for p in self.ref_model.parameters():

278 p.requires_grad = False

279

280 # the "old" policy _old , initially equals _ref
281 self.old_model = copy.deepcopy(self.ref_model)

282

283

284 self .optimizer = torch.optim.AdamW (self.model.parameters(),

lr=self.config.learning_rate)
285
286
287
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340

def

evaluate (self, step=0):

nnn

Calculate validation loss and rewards on the evaluation
dataset

nun

device = next(self.model.parameters()).device

self .model.eval ()

total_loss = 0

total_reward = 0

num_batches = 0

if not self.eval_envs: # Handle empty eval_envs
print ("No evaluation environments provided. Skipping
evaluation.")
self .model.train ()
return 0,0

with torch.no_grad():
for env in self.eval_envs:
# Get inputs and labels
input_ids, attention_mask = env.get_prompt_inputs ()
labels = env.get_labels ()

# Move to device

input_ids = input_ids.to(device)
attention_mask = attention_mask.to(device)
labels = labels.to(device)

# Forward pass for loss

outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
labels=1labels

loss = outputs.loss
total_loss += loss.item()

# Generate RNA sequence for reward calculation
gen_output = self.model.generate( # Renamed gen to
gen_output
input_ids=input_ids,
attention_mask=attention_mask,
max_new_tokens=self.config.max_completion_length,
num_return_sequences=1,
# Add other generation params if needed, e.g.,
top_p, temperature
do_sample=True, # Assuming sampling for reward
evaluation
top_p=self.config.top_p,
temperature=self.config.temperature,
)
# decode expects list of IDs, gen_output[0] is a
sequence of IDs (1D tensor)
generated_rna_bjuz_list =
self.tok_r.decode(gen_output) # decode from
custom_tokenizer returns a list of strings
generated_rna_bjuz = generated_rna_bjuz_list[0] if
generated_rna_bjuz_list else ""

# Convert bjuz to ACGU for rewarder
generated_rna_acgu =

generated_rna_bjuz.replace("b","A") .replace("j","C").replace("u",

II’IIII)
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def

total_reward += rewarder (generated_rna_acgu,
env.protein_str) # Use env.protein_str

num_batches += 1

avg_loss = total_loss / num_batches if num_batches > 0 else O
avg_reward = total_reward / num_batches if num_batches > 0
else O

# Log to wandb
if wandb.run: # Check if wandb run is active
wandb.log ({
"validation/loss": avg_loss,
"validation/reward": avg_reward,
"train/step": step # Use the global step passed to
evaluate

b

self .model.train ()
return avg_loss, avg_reward

train(self, epochs=1):

device = next(self.model.parameters()).device

num_gen = self.config.num_generations

max_new = self.config.max_completion_length

eps_clip = self.config.EPSILON # Use from trainer’s config
object

beta_val = self.config.BETA # Use from trainer’s config
object

mu_val = self.config.MU # Use from trainer’s config
object

# best_val_loss = float(’inf’) # Not used currently
validation_interval = 100 # Validate every 100 steps
global_step_counter = 0 # For periodic validation and logging

for epoch in range (epochs):
random.shuffle(self.train_envs)
# Consider limiting train_envs for quicker epochs if
dataset is large: self.train_envs[:200]
for step_idx, env in enumerate(self.train_envs):
# 0) prepare inputs for one protein (batch_size=1)

input_ids, attention_mask = env.get_prompt_inputs()
input_ids = input_ids.to(device)
attention_mask = attention_mask.to(device)
protein_str_val = env.protein_str # Use

env.protein_str

# 1) Sample once from _old (no grad)
# print (">>> Generating theta_old outputs for a
protein")
with torch.no_grad():
seq_old, logp_old = generate_with_log_probs(
model_obj=self.old_model, # Pass model_obj
input_ids=input_ids,
attention_mask=attention_mask,
num_return_sequences=num_gen,
max_new_tokens=max_new,
top_p=self.config.top_p,
temperature=self.config.temperature,
)
# print(">>> theta_old output generation is
completed")
N, T_len = seq_old.shape # Renamed T to T_len to
avoid conflict
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# 3.1) build decoder_input_ids for teacher forcing
start_tok = self.model.config.decoder_start_token_id
start_col = torch.full((N,1), start_tok,
device=device,
dtype=torch.long)
dec_inp = torch.cat([start_col, seq_old[:, :-1]11,
dim=1) # (N, T_len)

# 3.2) Prepare encoder inputs for batch N

enc_ids_repeated = input_ids.repeat_interleave (N,
dim=0) # Renamed enc_ids

enc_mask_repeated=
attention_mask.repeat_interleave (N, dim=0) #
Renamed enc_mask

# print (">>> Generating ref outputs for a protein")
with torch.no_grad(): # ref_model does not require
grad
out_ref = self.ref_model(
input_ids=enc_ids_repeated,
attention_mask=enc_mask_repeated,
decoder_input_ids=dec_inp,
)
logits_ref= out_ref.logits #
(N, T_len, V)
logp_ref = F.log_softmax(logits_ref, -1) #
(N, T_len, V)
logp_ref = logp_ref.gather(-1,
seq_old.unsqueeze (-1))\
.squeeze (-1) .detach () #
(N, T_len), ensure detached
# print (">>> ref output generation is completed")

# 2) Compute rewards & advantages (detach)

# print(">>> Started calculating rewards and
advantages")

# tok_r.decode expects a batch of sequences (list of
list of IDs or Tensor)

# seq_old is already a batch of sequences (Tensor)

decoded_seq_old_bjuz_list =
self.tok_r.decode(seq_old) # Returns list of bjuz
strings

# Convert bjuz to ACGU for rewarder; rewarder expects
list of char lists or list of strings

decoded_seq_old_acgu_char_lists = [[char for char in
seq.replace("b", "A").replace("j",
"C").replace("u", "U").replace("z",
"G").replace(" ", "")] for seq in
decoded_seq_old_bjuz_list]

# Pass seq_old (token_ids on device),
decoded_seq_old_acgu_char_lists (Python list of
lists of chars), protein_str_val

rewards_tensor = calculate_reward(seq_old,
decoded_seq_old_acgu_char_lists, input_ids,
protein_str_val,
pad_token_id=self.tok_r.tokenizer.pad_token_id,
eos_token_id=self.tok_r.tokenizer.eos_token_id)

advantages =
calculate_advantage (rewards_tensor) .detach ()

# Log reward stats to wandb

non_zero_rewards = rewards_tensor [rewards_tensor !=
0].flatten ()
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if wandb.run: # Check if wandb run is active
if non_zero_rewards.numel() > O:
wandb.log ({
"reward/mean":
non_zero_rewards.mean() .item (),
"reward/std":
non_zero_rewards.std() .item (),

"reward/max":
non_zero_rewards.max () .item (),
"reward/min":
non_zero_rewards.min() .item (),
"train/step": global_step_counter
B
else:
wandb.log ({
"reward/mean": 0.0, "reward/std": 0.0,
"reward/max": 0.0, "reward/min": 0.0,

"train/step": global_step_counter
b
# print (">>> Ended calculating rewards and
advantages")

# 3) Inner GRPO updates on _
for inner_loop_idx in range(mu_val): # Renamed inner
to inner_loop_idx
out_new = self.model( # Renamed out to out_new
input_ids=enc_ids_repeated,
attention_mask=enc_mask_repeated,
decoder_input_ids=dec_inp,

)
logits_new = out_new.logits
# (N, T_len, V)
logp_new = F.log_softmax(logits_new, -1)
# (N, T_len, V)
logp_new = logp_new.gather (-1,

seq_old.unsqueeze (-1))\
.squeeze (-1)
# (N, T_len)

# 3.3) clipped surrogate
ratio = torch.exp(logp_new - logp_old.detach())

# Detach logp_old, it’s from old_model
clipped = ratio.clamp(l - eps_clip, 1 + eps_clip)
loss_pg = - torch.mean(

torch.minimum(ratio * advantages,

clipped * advantages)

)

# 3.4) K L penalty wusing f(u)=u - log u - 1
if beta_val > O:

u = torch.exp(logp_ref - logp_new) #
logp_ref is already detached
kl_term = torch.mean(u - (logp_ref -

logp_new) - 1)
loss_total = loss_pg + beta_val * kl_term #
Renamed loss to loss_total
else:
kl_term = torch.tensor (0.0, device=device)
loss_total = loss_pg

# 3.5) debug prints (optional, can be verbose)

# print (f"Epoch {epoch+1} Step {step_idx} Inner
{inner_loop_idx} | "

# f"pg_loss={loss_pg.item():.4f}
kl1={kl_term.item():.4f}")
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if wandb.run: # Check if wandb run is active

wandb.log ({
"loss/pg_loss": loss_pg.item(),
"loss/kl_term": kl_term.item(),
"loss/total": loss_total.item(),
"train/step": global_step_counter # Log

with global step
1))

# 3.6) backprop & step

self .optimizer.zero_grad()

loss_total.backward ()

torch.nn.utils.clip_grad_norm_(self.model.parameters(),
max_norm=self.config.max_grad_norm)

self .optimizer.step ()

global_step_counter += 1 # Increment global step

# Run validation periodically
if self.eval_envs and global_step_counter %
validation_interval == 0:
val_loss, val_reward =
self.evaluate(step=global_step_counter) #
Pass global_step_counter
print (£f"Global Step {global_step_counter}
Validation: loss={val_loss:.4f}
reward={val_reward:.4f}")

# 4) sync _old -
self.old_model.load_state_dict (self.model.state_dict())

print (£"--- End Epoch {epoch+1} ---")

# if wandb.run: # Check if wandb run is active # Moved finish
to main
# wandb.finish ()

def load_data(path):
prots, rmas = [1, []
with open(path) as f:
for line in f:

line = line.strip()
if ’$’ not in line: continue
try:

p, r = line.split(’$’,1) # Split only on the first ’$’
prots.append(p); rnas.append(r)
except ValueError:
print (£"Skipping malformed line in data file:
{linel}") # Handle lines without ’$’ if strip
didn’t catch it
return prots, rnas

if __name__ == ’__main__"7:

# Initialize wandb once for the entire script run
# Hyperparameter tuning might reinitialize runs if configured to

do so.
wandb.init(project=globa1_config_module.WANDB_PRUJECT,

name="grpo-main-run", reinit=True) # Allow reinit for tuning
parser = argparse.ArgumentParser ()

# Arguments from global_config_module as defaults
parser.add_argument (’--train_data’,
defau1t=globa1_config_module.TRAIN_DATA)
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parser.add_argument (’--eval_data’,
defau1t=globa1_config_module.EVAL_DATA)

parser.add_argument (’--model_path’,
defau1t=globa1_config_module.MODEL_PATH)

parser.add_argument (’--protein_tokenizer’,
defau1t=globa1_config_module.PRUTEIN_TOKENIZER)

parser.add_argument (’--rna_tokenizer’,
defau1t=globa1_config_module.RNA_TOKENIZER)

parser.add_argument (’--output_dir’, default=’./results_grpo’) #
Different default from CustomGRPOConfig

parser.add_argument (’--epochs’, type=int,
defau1t=globa1_config_module.NUM_TRAIN_EPUCHS)

parser.add_argument (’--learning_rate’, type=float,
defau1t=globa1_config_module.LEARNING_RATE)

parser.add_argument (’--max_input_length’, type=int,
defau1t=globa1_config_module.MAX_PROMPT_LENGTH)

parser.add_argument (’--max_completion_length’, type=int,
defau1t=globa1_config_module.MAX_COMPLETION_LENGTH)

parser.add_argument (’--num_generations’, type=int,
defau1t=globa1_config_module.NUM_GENERATIUNS)

# top_p, temperature, max_grad_norm are not in
global_config_module, use CustomGRPOConfig defaults or add to
global_config_module

parser.add_argument (’--top_p’, type=float, default=1.0)

parser.add_argument (’--temperature’, type=float, default=1.0)

parser.add_argument (’--max_grad_norm’, type=float, default=1.0)

# GRPO specific params from global_config_module
parser.add_argument (’--beta’, type=float,
default=global_config_module.BETA)
parser.add_argument (’--epsilon’, type=float,
default=global_config_module.EPSILON)
parser.add_argument (’--mu’, type=int,
default=global_config_module.MU)

parser.add_argument (’--tune_hyperparameters’,
action=’store_true’, help=’Run hyperparameter tuning with
Optuna’)

parser.add_argument (’--n_trials’, type=int, default=20,
help=’Number of trials for hyperparameter tuning?’)

args = parser.parse_args ()

# Setup

random.seed (42); np.random.seed (42); torch.manual_seed (42)

if torch.cuda.is_available(): torch.cuda.manual_seed_all (42) #
For GPU reproducibility

# Tokenizers & Model

tok_p = get_tokenizer("bpe", global_config_module.VOCAB_SIZE,
global_config_module.MAX_LENGTH,
tokenizer_path=args.protein_tokenizer)

tok_r = get_tokenizer ("bpe", global_config_module.VOCAB_SIZE,
global_config_module.MAX_LENGTH,
tokenizer_path=args.rna_tokenizer)

# Ensure pad token IDs are set if BpeTokenizer class doesn’t
handle it automatically after load

# The BpeTokenizer in ‘classifier/util/tokenizer.py‘ and
‘grpo-trainer/custom_tokenizer.py*

# sets special tokens using a dict. Let’s assume pad_token_id is
accessible.

# The ProteinRNAEnvironment needs these.

# tok_p.pad_token_id = tok_p.tokenizer.token_to_id("<pad>") # Or
however it’s stored

# tok_r.pad_token_id = tok_r.tokenizer.token_to_id(”<pad>")
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573 model =
T5ForConditionalGeneration.from_pretrained(args.model_path).to(’cuda’
if torch.cuda.is_available() else ’cpu’)

574

575 # Data Envs

576 prots_train, rnas_train = load_data(args.train_data)

577 train_envs = [ProteinRNAEnvironment(p, r, tok_p, tok_r,
args.max_input_length, args.max_completion_length) for p, r
in zip(prots_train, rnas_train)]

578 eval_envs = []

579 if args.eval_data and os.path.exists(args.eval_data):

580 prots_eval, rnas_eval = load_data(args.eval_data)

581 eval_envs = [ProteinRNAEnvironment(p, r, tok_p, tok_r,

args.max_input_length, args.max_completion_length) for p,
r in zip(prots_eval, rnas_eval)]
582 print (f"Created {len(train_envs)} training environments and
{len(eval_envs)} evaluation environments.")
583

584 # Config for GRPO traimer

585 # Pass CLI args to override defaults in CustomGRPOConfig
586 grpo_trainer_config = CustomGRPOConfig(

587 output_dir=args.output_dir,

588 learning_rate=args.learning_rate,

589 max_prompt_length=args.max_input_length,

590 max_completion_length=args.max_completion_length,

591 num_generations=args.num_generations,

592 top_p=args.top_p,

593 temperature=args.temperature,

594 max_grad_norm=args.max_grad_norm,

595 BETA=args .beta,

596 EPSILON=args.epsilon,

597 MU=args .mu

598 )

599

600 if args.tune_hyperparameters:

601 print ("Starting hyperparameter tuning...")

602 from hyperparameter_tuning import run_hyperparameter_tuning #

Assuming it’s in the same directory
603

604 # The hyperparameter_tuning script will modify the BETA,
EPSILON, MU attributes

605 # of the config object passed to it.

606 best_params = run_hyperparameter_tuning/(

607 model=model,

608 tok_p=tok_p,

609 tok_r=tok_r,

610 train_envs=train_envs,

611 eval_envs=eval_envs,

612 tuning_config=grpo_trainer_config, # Pass the trainer’s

config object

613 n_trials=args.n_trials

614 )

615

616 # Update grpo_trainer_config with best parameters found by
Optuna study

617 # The run_hyperparameter_tuning function already modifies the
tuning_config object’s attributes

618 # if designed to do so, or returns best_params.

619 # If it returns params, apply them:

620 if best_params:

621 grpo_trainer_config.BETA = best_params.get(’beta’,
grpo_trainer_config.BETA)

622 grpo_trainer_config.EPSILON = best_params.get(’epsilon’,

grpo_trainer_config.EPSILON)
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grpo_trainer_config.MU = best_params.get(’mu’,
grpo_trainer_config.MU)

print ("Best hyperparameters from tuning:")

print (f"BETA: {grpo_trainer_config.BETA}, EPSILON:
{grpo_trainer_config.EPSILON}, MU:
{grpo_trainer_config.MU}")

wandb.config.update(best_params, allow_val_change=True) # Log
best params to current wandb run

# Trainer
print ("Starting training with config:")
print (vars(grpo_trainer_config)) # Print the config being used

trainer = ProteinRNAGRPOTainer (model, tok_p, tok_r, train_envs,
eval_envs, grpo_trainer_config)
trainer.train(epochs=args.epochs)

if eval_envs: # Final evaluation after training
print ("Performing final evaluation...")
final_val_loss, final_val_reward =
trainer.evaluate (step=trainer.config.num_train_epochs x*
len(train_envs)) # Approx global step
print (f"Final Validation: loss={final_val_loss:.4f}
reward={final_val_reward:.4f}")

if wandb.run: # Ensure wandb run is finished
wandb.finish ()

File: grpo-trainer/reward_functions.py

Listing 14: Code Snippet

import numpy as np

from typing import List, Tuple, Dict, Any, Optional, Union
import RNA # ViennaRNA package for MFE calculation

import config as global_config_module # Use an alias
import get_binding_score

def calculate_gc_content(sequence: str) -> float:
if not sequence: # Check for empty sequence
return 0.0

gc_count = sequence.upper () .count(’G’) +
sequence .upper () .count(’C’) # Ensure uppercase
total_count = len(sequence)

return gc_count / total_count if total_count > O else 0.0

def calculate_gc_content_reward(sequence: str) -> float:
nun
Calculate reward based on GC content.
Args: sequence: RNA sequence (ACGU)
Returns: Reward value between O and 1
nun
if not sequence: returmn 0.0
gc_content = calculate_gc_content (sequence)

gc_min = global_config_module.GC_CONTENT_MIN
gc_max global_config_module.GC_CONTENT_MAX

if gc_min <= gc_content <= gc_max:
return 1.0
else:
if gc_content < gc_min:
distance = gc_min - gc_content
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def

def

max_distance_possible = gc_min # from O to gc_min

# Reward decreases linearly from 1 (at gc_min) to 0 (at O
GC content)

# Ensure max_distance_possible is not =zero

return max (0.0, 1.0 - (distance / max_distance_possible
if max_distance_possible > le-6 else 1.0))
else: # gc_content > gc_max
distance = gc_content - gc_max
max_distance_possible = 1.0 - gc_max # from gc_max to 1.0

# Reward decreases linearly from 1 (at gc_max) to O (at
100% GC content)

return max (0.0, 1.0 - (distance / max_distance_possible
if max_distance_possible > 1le-6 else 1.0))

calculate_mfe(sequence: str) -> float:
nmnn
Calculate Minimum Free Energy for an RNA sequence using ViennaRNA.
Args: sequence: RNA sequence (ACGU)
Returns: MFE value (lower is better for stability)
nmnn
if not sequence or not all(c in "ACGU" for c in
sequence .upper ()): # Check for valid RNA sequence
# print (f"Warning: Invalid RNA sequence for MFE: {sequencel}")
return 0.0 # Or handle error appropriately, MFE is usually
negative

try:
# ViennaRNA might be sensitive to non-ACGU characters or very
short sequences
if len(sequence) < 4: # Arbitrary minimum length for folding,
adjust as needed
return 0.0
_, mfe_val = RNA.fold(sequence.upper()) # Use a different
name, mfe_val, ensure uppercase
return mfe_val
except Exception as e:
# print (f"Error calculating MFE for ’{sequencel}’: {e}")
return 0.0 # Return a neutral value or error indicator

calculate_mfe_reward(sequence: str) -> float:
nun
Calculate reward based on MFE value. Normalized by length.
Lower MFE means more stable structure, which is better.
Args: sequence: RNA sequence (ACGU)
Returns: Reward value between O and 1
nun
if not sequence:
return 0.0

mfe_val = calculate_mfe(sequence) # Renamed mfe to mfe_val
if len(sequence) == 0: # Should have been caught by

calculate_mfe, but double check
return 0.0

length_normalized_mfe = mfe_val / len(sequence)

# Target is highly negative MFE (e.g., -0.5 kcal/mol/nt is good)
# Let’s define a target normalized MFE, e.g., -0.5

# and a worst MFE, e.g., O or slightly positive.

# Reward can be 1 if length_normalized_mfe <= target_norm_mfe

# Reward can be 0O if length_normalized_mfe >= worst_norm_mfe

# Linear interpolation in between.
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def

target_norm_mfe = -0.5 # Example: very stable
worst_norm_mfe = 0.0 # Example: unstable or unfolded

if length_normalized_mfe <= target_norm_mfe:
return 1.0

elif length_normalized_mfe >= worst_norm_mfe:
return 0.0

else: # target_norm_mfe < length_normalized_mfe < worst_norm_mfe
# Linearly map from [worst_norm_mfe, target_norm_mfe] to [O,

1]

# Since target is more negative, (val - worst) / (target -
worst)

return (length_normalized_mfe - worst_norm_mfe) /
(target_norm_mfe - worst_norm_mfe)

calculate_binding_affinity(protein_sequence: str, rna_sequence:
str) -> float:
Placeholder for binding affinity calculation.
Args: protein_sequence, rna_sequence (ACGU)
Returns: Binding affinity score between O and 1
# This should be replaced with a real model prediction
if not protein_sequence or not rmna_sequence:
return 0.0

return get_binding_score(protein_sequence, rna_sequence)

calculate_token_level_reward(

protein_sequence: str,

partial_rna_sequence: str, # ACGU format

position: int, # Current length of partial_rna_sequence
max_length: int # Max possible length of RNA

) -> float:

Calculate combined reward for a partial RNA sequence at a
specific position.

nnn

# Ensure partial_rna_sequence is not empty for component reward
functions

if not partial_rmna_sequence:
return 0.0

gc_reward_val = calculate_gc_content_reward(partial_rna_sequence)
# Renamed gc_reward

mfe_reward_val = calculate_mfe_reward(partial_rna_sequence) #
Renamed mfe_reward

binding_reward_val = calculate_binding_affinity(protein_sequence,
partial_rna_sequence) # Renamed binding_reward

# Weighting rewards (can be dynamic based on progress if desired)

# progress = position / max_length if max_length > 0 else O

# Example: fixed weights from global config

combined_reward_val = ( # Renamed combined_reward
global_config_module.BINDING_AFFINITY_WEIGHT x*

binding_reward_val +

global_config_module.GC_CONTENT_WEIGHT * gc_reward_val +
global_config_module.MFE_WEIGHT * mfe_reward_val

)

# Normalize combined reward to be between 0 and 1 if sum of
weights can exceed 1
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138 # sum_weights = global_config_module.BINDING_AFFINITY_WEIGHT +
global_config_module.GC_CONTENT_WEIGHT +
global_config_module.MFE_WEIGHT

139 # if sum_weights > O0:

140 # combined_reward_val = combined_reward_val / sum_weights
141 # else:

142 # combined_reward_val = 0.0

143

144 return max (0.0, min(1.0, combined_reward_val)) # Ensure it’s

within [0,1]
145
146
147 def rewarder (partial_rna_acgu: str, protein_sequence_str: str,
protein_ids=None, rna_ids=None) -> float: # Renamed params

nun

149 Compute the GRPO token-level reward for a partial RNA sequence
(ACGU)

150 given its protein prompt.

151 e

152 current_pos = len(partial_rna_acgu) # Renamed position to
current_pos

153 max_len_val = global_config_module.MAX_COMPLETION_LENGTH #
Renamed max_len

154

155 # Compute the combined t ok en level reward

156 reward_value = calculate_token_level_reward( # Renamed reward to
reward_value

157 protein_sequence=protein_sequence_str, # Pass renamed param

158 partial_rna_sequence=partial_rna_acgu, # Pass renamed param

(ACGU)

159 position=current_pos,

160 max_length=max_len_val

161 )

162 return float(reward_value)

File: grpo-trainer/.DS_Store
This is a system file (.DS_Store) generated by macOS. It typically contains custom attributes of its

containing folder, such as the position of icons or the choice of a background image. Its content is
not relevant as source code and is therefore omitted.

Directory: grpo-trainer/util/

File: grpo-trainer/util/create_val.py

Listing 15: Code Snippet

I import pandas as pd
> import random

4 # Set random seed for reproducibility
5 random.seed (42)

7 # Read the CSV file
8 # Ensure ’positive_sequences.csv’ is in the correct path or provide

full path
9 try:
10 df = pd.read_csv(’positive_sequences.csv’)
11 except FileNotFoundError:
12 print ("Error: ’positive_sequences.csv’ not found. Please check
the path.")
13 exit ()

53



15
16

R o= = =
S © ®© =

[~

»

[T SR SR O}

=

25
26

27

43
44
45
46
47
48

49
50

# Remove rows with missing RNA or protein sequences
df = df.dropna(subset=[’protein_seq’, ’rna_sequence’])

# Keep only protein_seq and rna_seq columns
df _selected = df [[’protein_seq’, ’rna_sequence’]].copy() # Use
.copy() to avoid SettingWithCopyWarning

# Find the longest RNA sequence (on the selected dataframe)
if not df_selected.empty:
df _selected[’rna_length’] =
df _selected[’rna_sequence’].astype(str).str.len() # Ensure
rna_sequence 1is string
max_rna_length = df_selected[’rna_length’].max()
# Get the first such longest sequence if multiple exist

longest_rna_series = df_selected.loc[df_selected[’rna_length’] ==
max_rna_length, ’rna_sequence’]
longest_rna = longest_rna_series.iloc[0] if not
longest_rna_series.empty else "N/A"
else:
max_rna_length = 0
longest_rna = "N/A"

print ("DataFrame is empty after dropping NA values.")

# Randomly select 100 rows for validation, if enough rows exist
num_samples = min(100, len(df_selected))
if num_samples > O:
validation_df = df_selected.sample(n=num_samp1es,
random_state=42) .drop(columns=[’rna_length’], errors=’ignore’)
# Save to validation_rl.txt (protein,rna format without header
for some tools)
# The original inference.py splits by ’,’, so CSV format is
expected
validation_df .to_csv(’validation_rl.txt’, index=False,
header=False) # header=False if inference.py expects no header
print (f"Successfully created validation_rl.txt with
{len(validation_df)} sequences.")
else:
print ("Not enough data to create validation_rl.txt")

# Print summary

print (f"Original dataset had {len(df)} rows, {len(df_selected) if
’df _selected’ in locals() else 0} valid sequences after
cleaning.")

print (f"Longest RNA sequence length: {max_rna_lengthl}")

print (f"Example of longest RNA sequence: {str(longest_rna)[:50]}...")

File: grpo-trainer/util/create_validation.py

Listing 16: Code Snippet

import pandas as pd
import random

# Set random seed for reproducibility
random. seed (42)

# Read the CSV file

# Ensure ’positive_sequences.csv’ is in the correct path or provide
full path

try:
df = pd.read_csv(’positive_sequences.csv’)
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11 except FileNotFoundError:

12 print ("Error: ’positive_sequences.csv’ not found. Please check
the path.")
13 exit ()

15 # Remove rows with missing protein sequences (and rna_seq for safety,
though not explicitly checked before)
16 df = df.dropna(subset=[’protein_seq’, ’rna_seq’])

19 # Keep only protein_seq and rna_seq columns
20 df_selected = df [[’protein_seq’, ’rna_seq’]].copy() # Use .copy() to
avoid SettingWithCopyWarning

22 # Find the longest RNA sequence
23 1f not df_selected.empty:

24 # Ensure rna_seq is treated as string for .str accessor

25 df _selected[’rna_length’] =
df _selected[’rna_seq’].astype(str).str.len()

26 max_rna_length = df_selected[’rna_length’].max()

27 longest_rna_series = df_selected.loc[df_selected[’rna_length’] ==
max_rna_length, ’rna_seq’]

28 longest_rmna = longest_rna_series.iloc[O] if not
longest_rna_series.empty else "N/A"

9 else:

30 max_rna_length = 0

31 longest_rna = "N/A"

32 print ("DataFrame is empty after dropping NA values.")

35 # Randomly select 100 rows, if enough rows exist
36 num_samples = min (100, len(df_selected))
37 if num_samples > O:

38 validation_df = df_selected.sample(n=num_samples,
random_state=42) .drop(columns=[’rna_length’], errors=’ignore’)
39 # Save to validation_rl.txt (protein,rna format, no header)
40 # inference.py in the main directory splits by ’,’, so CSV format
is fine.
41 validation_df .to_csv(’validation_rl.txt’, index=False,

header=False) # header=False if inference.py expects no header

43 print (f"Successfully created validation_rl.txt with
{len(validation_df)} sequences.")

44  else:

45 print ("Not enough data to create validation_rl.txt")

46

47

48 print(f"Original dataset had {len(df)} rows, {len(df_selected) if
’df _selected’ in locals() else 0} valid sequences after
cleaning.")

49 print(f"Longest RNA sequence length: {max_rna_length}")

5o print (f"Example of longest RNA sequence: {str(longest_rma)[:50]}...")
# Print first 50 characters

File: grpo-trainer/util/generate_data.py

Listing 17: Code Snippet

import os
import csv
from tqdm import tqdm # progress bar library
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6 # 1) Define paths

7 #

s FASTA_FOLDER =
"/data6/helya/dataset/CLIPdb_cluster/cd_hit_results_RBPs/identity_90"

9 PROTEIN_CSV = "/data6/alpsencer/reinforce_rna/protein_seqs.csv" #
CSV with columns: prot_name, seq
10 OUTPUT_CSV = "./output.csv" # Output in the current directory of

this script

12 #

14 #

15 protein_dict = {}

16 try:

17 with open(PROTEIN_CSV, "r", newline="") as f_in:

18 reader = csv.DictReader (f_in)

19 if ’prot_name’ not in reader.fieldnames or ’seq’ not in

reader.fieldnames:

20 print (f"Error: PROTEIN_CSV ’{PROTEIN_CSV}’ must have
’prot_name’ and ’seq’ columns.")

21 exit ()

22 for row in reader:

23 prot_name = row["prot_name"].strip().lower() # using
lowercase keys

2 protein_dict [prot_name] = row["seq"]

25 except FileNotFoundError:

26 print (f"Error: Protein CSV file not found at ’{PROTEIN_CSV}’")

27 exit ()

28

29 #

30 # 3) Process FASTA files and write to CSV

31 #

32 if not os.path.isdir (FASTA_FOLDER):

33 print (f"Error: FASTA folder not found at ’{FASTA_FOLDER}’")
34 exit ()

36 with open(OUTPUT_CSV, "w", newline="") as f_out:

37 writer = csv.writer (f_out)

38 writer.writerow (["protein_name", "protein_seq", "rna_sequence",
"strand", "pair"])

39

40 # Get all .fa files

41 fasta_files = [f for f in os.listdir (FASTA_FOLDER) if

f.endswith(".fa") or f.endswith(".fasta")]
4

43 if not fasta_files:

44 print (f"No FASTA files found in ’{FASTA_FOLDER}’>.")

45

46 # Loop over the files with a progress bar

47 for file_name in tqdm(fasta_files, desc="Processing FASTA files"):

48 # Derive protein name from file name (first token before
underscore)

49 protein_name_raw = file_name.split("_") [0]

50 protein_seq = protein_dict.get(protein_name_raw.lower (),

"NA") # Default to "NA" if not found
fa_path = os.path.join(FASTA_FOLDER, file_name)

v
DR =

current_rna_sequence = ""

header_info = "" # Store the most recent header

[TV
=

v
<
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# Read all lines from the FASTA file
try:
with open(fa_path, "r") as fa_in:
for line in fa_in:
line = line.strip()
if not line: continue # Skip empty lines

if line.startswith(">"):
# If we have a sequence buffered, process it
with previous header
if current_rna_sequence and header_info:

strand = "NA"

# Process header_info for strand

temp_header = header_info

if temp_header.endswith (" (+)"):
strand = "+"

temp_header = temp_header[:-3].strip()
elif temp_header.endswith("(-)"):

strand = "-"

temp_header = temp_header[:-3].strip()
writer.writerow ([protein_name_raw,

protein_seq, current_rna_sequence,

strand, "+"])

# Start new sequence
header_info = line[1:] # Store new header
without ’>°
current_rna_sequence = ""
else:
current_rna_sequence += line # Append
sequence lines

# Process the last sequence in the file
if current_rna_sequence and header_info:

strand = "NA"

temp_header = header_info

if temp_header.endswith (" (+)"):
strand = "+"

temp_header = temp_header[:-3].strip()
elif temp_header.endswith("(-)"):
strand = "-"
temp_header = temp_header[:-3].strip()
writer.writerow([protein_name_raw, protein_seq,
current_rna_sequence, strand, "+"])

except Exception as e:
print (f"Error processing file {file_name}: {el}")
continue # Skip to next file

# Optional: print progress for each file (can be too verbose
with tqdm)
# print (f"Processed file: {file_namel}")

print (f"Processing complete. Output written to {OUTPUT_CSV}")

File: grpo-trainer/util/test_tokenizer.py

Listing 18: Code Snippet

from transformers import PreTrainedTokenizerFast
from itertools import islice
import os # For checking file existence

TOKENIZER_FILE_PATH =
"/data6/alpsencer/tokenizers/bpe_protein_1000_1024. json"
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TRAIN_DATA_PATH = "/data6/alpsencer/reinforce_rna/sample_1K.txt" #
Renamed TRAIN_DATA to TRAIN_DATA_PATH

if not os.path.exists (TOKENIZER_FILE_PATH):
print (f"Error: Tokenizer file not found at {TOKENIZER_FILE_PATH}")
exit ()

tokenizer = PreTrainedTokenizerFast (

tokenizer_file=TOKENIZER_FILE_PATH,

unk_token="<unk>",

pad_token="<pad>",

eos_token="</s>", # EOS token if your model uses it for proteins

bos_token="<s>", # BOS token if your model uses it

model_max_length=1024,

padding_side="left", # Ensure this matches model’s expectation
for T5 encoder

# T5 usually expects a sentence-piece like format, often with EO0OS at
the end of input.

# If your BPE tokenizer was trained without explicit EOS for protein
inputs,

# this setup is fine. The main thing is consistency with training.

if not os.path.exists(TRAIN_DATA_PATH):
print (f"Error: Train data file not found at {TRAIN_DATA_PATH}")
exit ()

print (£"Using tokenizer: {TOKENIZER_FILE_PATH}")

print (f"Pad token: ’{tokenizer.pad_token}’, ID:
{tokenizer.pad_token_idl}")

print (£"EOS token: ’{tokenizer.eos_token}’, ID:
{tokenizer.eos_token_id}")

print (£"UNK token: ’{tokenizer.unk_token}’, ID:
{tokenizer .unk_token_idl}")

print (£"BOS token: ’{tokenizer.bos_token}’, ID:
{tokenizer.bos_token_id}")

with open(TRAIN_DATA_PATH) as f:
for line_num, line_content in enumerate(islice(f, 5)): # Test a
few lines
line_content = line_content.strip()
if not line_content or "$" not in line_content:
print (f"Skipping malformed line {line_num+1}:
{line_content}")
continue

# Assuming format is protein$rna or protein$something_else
protein_seq, _ = line_content.split("$", 1) # Renamed protein
to protein_seq

# For T, inputs are often not lowercased by default unless
normalizer does it.

# The custom BpeTokenizer class had Lowercase normalizer.

# PreTrainedTokenizerFast directly from file might or might
not apply it

# depending on how the tokenizer.json was saved. Assume it’s
handled or not critical for this test.

# Some tokenizers add special tokens automatically, some
don’t.

# For T5, usually you’d add EOS to the protein input if it
was trained that way.
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55 # protein_input_for_tokenizer = protein_seq +
tokenizer.eos_token # Example if EOS is needed

56 protein_input_for_tokenizer = protein_seq

57

58 enc = tokenizer(

59 protein_input_for_tokenizer,

60 truncation=True,

61 padding="max_length", # Pad to model_max_length

62 max_length=tokenizer.model_max_length, # Use tokenizer’s

max_length

63 return_tensors=None, # Get lists of IDs

64 add_special_tokens=True # Let tokenizer handle BOS/EQOS

based on its config

65 )

66

67 input_ids_list = enc["input_ids"] # Renamed ids to
input_ids_1list

68 attention_mask_list = enc["attention_mask"] # Renamed mask to
attention_mask_1list

69

70 # Calculate real length based on attention mask

71 # For left padding, actual tokens are at the end.

72 try:

73 first_real_token_idx = attention_mask_list.index (1)

74 real_len = len(input_ids_list) - first_real_token_idx

75 real_ids = input_ids_list[first_real_token_idx:]

76 except ValueError: # If no 1 in attention_mask (e.g. all
padding)

77 real_len = 0

78 real_ids = []

79

80

81 print (£"\n=== PROTEIN PROMPT (Line {line_num+1}) ===")

82 print ("Original:", protein_seq[:60] + ("..." if
len(protein_seq) > 60 else ""))

83 # print ("Input to tokenizer:",
protein_input_for_tokenizer [:60] + ("..." if
len(protein_input_for_tokenizer) > 60 else ""))

84

85 print ("\nTokenized IDs (first 10 of padded):",
input_ids_list[:10])

86 print ("Tokenized IDs (last 10 of padded):",
input_ids_list[-10:])

87 print ("Attention Mask (first 10):", attention_mask_list[:10])

88 print ("Attention Mask (last 10):", attention_mask_list[-10:])

89

90 print ("\n[Padded left real tokens at end]")

91 if real_ids:

92 print ("Real IDs (first 10):", real_ids[:10])

93 print ("Real IDs (last 10):", real_ids[-10:])

94 print ("Real Tokens (first 10):",

tokenizer.convert_ids_to_tokens(real_ids[:10]))

95 print ("Real Tokens (last 10):",

tokenizer.convert_ids_to_tokens(real_ids[-10:]1))

9% print ("Real token count:", real_len)

97 decoded_real = tokenizer.decode(real_ids,

skip_special_tokens=False) # See special tokens

98 decoded_real_skip_special = tokenizer.decode(real_ids,

skip_special_tokens=True)
99 print ("Decoded (real tokens, keep special):",

decoded_real[:60] + ("..." if len(decoded_real) > 60
else ""))

100 print ("Decoded (real tokens, skip special):",
decoded_real_skip_special[:60] + ("..." if

len(decoded_real_skip_special) > 60 else ""))
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101 else:

102 print ("No real tokens found (all padding or empty
input) . ")

103 print ("

104 # break # remove ’break’ if you want to sample more lines
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